Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Frequency-specific coupling in fronto-parieto-occipital cortical circuits underlie active tactile discriminationPublication . Kunicki, Carolina; Moioli, Renan C.; Pais-Vieira, Miguel; Peres, André Salles Cunha; Morya, Edgard; Nicolelis, Miguel A. L.Processing of tactile sensory information in rodents is critically dependent on the communication between the primary somatosensory cortex (S1) and higher-order integrative cortical areas. Here, we have simultaneously characterized single-unit activity and local field potential (LFP) dynamics in the S1, primary visual cortex (V1), anterior cingulate cortex (ACC), posterior parietal cortex (PPC), while freely moving rats performed an active tactile discrimination task. Simultaneous single unit recordings from all these cortical regions revealed statistically significant neuronal firing rate modulations during all task phases (anticipatory, discrimination, response, and reward). Meanwhile, phase analysis of pairwise LFP recordings revealed the occurrence of long-range synchronization across the sampled fronto-parieto-occipital cortical areas during tactile sampling. Causal analysis of the same pairwise recorded LFPs demonstrated the occurrence of complex dynamic interactions between cortical areas throughout the fronto-parietal-occipitl loop. These interactions changed significantly between cortical regions as a function of frequencies (i.e. beta, theta and gamma) and according to the different phases of the behavioral task. Overall, these findings indicate that active tactile discrimination by rats is characterized by much more widespread and dynamic complex interactions within the fronto-parieto-occipital cortex than previously anticipated.
- Method for positioning and rehabilitation training with the ExoAtlet® powered exoskeletonPublication . Pais-Vieira, Carla; Khazraei, Mehrab; Neves-Amado, João; Perrotta, André; Morya, Edgard; Moioli, Renan; Shapkova, Elena; Pais-Vieira, MiguelExoskeletons for locomotion, support, or other uses are becoming more common. An increasing number of studies are demonstrating relevant results in rehabilitation. Here we describe the steps required to properly place and train patients in ExoAtlet ® powered exoskeletons (Moscow, Russia), for which there is currently limited information available. These steps combine actions related to the hardware, software, as well as safety, rehabilitation, and psycho-emotional state of the subject. Training starts with a general preparation of the environment, the equipment, and the patient. When the actual training program begins, the patient needs to gradually learn to perform the different actions that will be required to control the exoskeleton. Initially, training requires transferring weight between legs to guarantee adequate equilibrium control. Then, actions assisted by computer-controlled motors begin, namely: standing up, walking in place, moving small distances and sitting down. As the patient becomes comfortable with the exoskeleton and the cardiovascular system becomes adjusted to the upright position, training can then include walking over longer distances, inclined planes, opening doors, and climbing stairs.