Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Occurrence of chiral bioactive compounds in the aquatic environment: a review
    Publication . Ribeiro, Cláudia; Ribeiro, Ana Rita; Maia, Alexandra S.; Tiritan, Maria Elizabeth
    In recent decades, the presence of micropollutants in the environment has been extensively studied due to their high frequency of occurrence, persistence and possible adverse effects to exposed organisms. Concerning chiral micropollutants in the environment, enantiomers are frequently ignored and enantiomeric composition often neglected. However, enantioselective toxicity is well recognized, highlighting the need to include enantioselectivity in environmental risk assessment. Additionally, the information about enantiomeric fraction (EF) is crucial since it gives insights about: (i) environmental fate (i.e., occurrence, distribution, removal processes and (bio)degradation); (ii) illicit discharges; (iii) consumption pattern (e.g., illicit drugs, pharmaceuticals used as recreational drugs, illicit use of pesticides); and (iv) enantioselective toxicological effects. Thus, the purpose of this paper is to provide a comprehensive review about the enantioselective occurrence of chiral bioactive compounds in aquatic environmental matrices. These include pharmaceuticals, illicit drugs, pesticides, polychlorinated biphenyls (PCBs) and polycyclic musks (PCMs). Most frequently analytical methods used for separation of enantiomers were liquid chromatography and gas chromatography methodologies using both indirect (enantiomerically pure derivatizing reagents) and direct methods (chiral stationary phases). The occurrence of these chiral micropollutants in the environment is reviewed and future challenges are outlined.
  • Enantiomeric separation of tramadol and Its metabolites: method validation and application to environmental samples
    Publication . Silva, Cátia; Ribeiro, Cláudia; Maia, Alexandra S.; Gonçalves, Virgínia; Tiritan, Maria Elizabeth; Afonso, Carlos
    The accurate assessment of racemic pharmaceuticals requires enantioselective analytical methods. This study presents the development and validation of an enantioselective liquid chromatography with a fluorescence detection method for the concomitant quantification of the enantiomers of tramadol and their metabolites, N-desmethyltramadol and O-desmethyltramadol, in wastewater samples. Optimized conditions were achieved using a Lux Cellulose-4 column 150 × 4.6 mm, 3 μm isocratic elution, and 0.1% diethylamine in hexane and ethanol (96:4, v/v) at 0.7 mL min-1. The samples were extracted using 150 mg Oasis® mixed-mode cation exchange (MCX) cartridges. The method was validated using a synthetic effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor. The method demonstrated to be selective, accurate, and linear (r2 > 0.99) over the range of 56 ng L-1 to 392 ng L-1. The detection and the quantification limits of each enantiomer were 8 ng L-1 and 28 ng L-1 for tramadol and N-desmethyltramadol, and 20 ng L-1 and 56 ng L-1 for O-desmethyltramadol. The feasibility of the method was demonstrated in a screening study in influent and effluent samples from a wastewater treatment plant. The results demonstrated the occurrence of tramadol enantiomers up to 325.1 ng L-1 and 357.9 ng L-1, in the effluent and influent samples, respectively. Both metabolites were detected in influents and effluents.