Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 4 of 4
  • Fármacos quirais em diferentes matrizes ambientais: ocorrência, remoção e toxicidade
    Publication . Ribeiro, Ana R.; Afonso, Carlos; Castro, Paula M. L.; Tiritan, Maria E.
    In recent decades, the occurrence of pharmaceuticals in the environment has been widely reported due to their high frequency and recalcitrance in many cases. Concerning the chiral pharmaceuticals (CPs) in environmental matrices, the stereochemistry is often neglected and enantiomers are determined together as unique molecules. However, it is well known that CPs might have enantioselective toxicity, rendering important to assess the occurrence and degradation processes of single enantiomers in the environment, namely during biological treatment in wastewater treatment plants (WWTPs). The development of analytical methods to qualitatively and quantitatively evaluate the enantiomers of CPs is crucial for determining enantiomeric fraction (EF). The EF is the most important parameter in studies involving enantiomers and enantioselective processes and fundamental in biodegradation studies and wastewater monitoring. This review summarizes the analytical methods used to determine EF of CPs in environmental matrices and/or during biodegradation processes. The occurrence of CPs in the environment and their biodegradation are reviewed and future trends in the area outlined.
  • Enantiomeric fraction evaluation of pharmaceuticals in environmental matrices by liquid chromatography-tandem mass spectrometry
    Publication . Ribeiro, Ana Rita; Santos, Lúcia H. M. L. M.; Maia, Alexandra S.; Delerue-Matos, Cristina; Castro, Paula M. L.; Tiritan, Maria Elizabeth
    The interest for environmental fate assessment of chiral pharmaceuticals is increasing and enantioselective analytical methods are mandatory. This study presents an enantioselective analytical method for the quantification of seven pairs of enantiomers of pharmaceuticals and a pair of a metabolite. The selected chiral pharmaceuticals belong to three different therapeutic classes, namely selective serotonin reuptake inhibitors (venlafaxine, fluoxetine and its metabolite norfluoxetine), beta-blockers (alprenolol, bisoprolol, metoprolol, propranolol) and a beta2-adrenergic agonist (salbutamol). The analytical method was based on solid phase extraction followed by liquid chromatography tandem mass spectrometry with a triple quadrupole analyser. Briefly, Oasis® MCX cartridges were used to preconcentrate 250 mL of water samples and the reconstituted extracts were analysed with a Chirobiotic™ V under reversed mode. The effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor (AGS-SBR) was used to validate the method. Linearity (r2 > 0.99), selectivity and sensitivity were achieved in the range of 20–400 ng L−1 for all enantiomers, except for norfluoxetine enantiomers which range covered 30–400 ng L−1. The method detection limits were between 0.65 and 11.5 ng L−1 and the method quantification limits were between 1.98 and 19.7 ng L−1. The identity of all enantiomers was confirmed using two MS/MS transitions and its ion ratios, according to European Commission Decision 2002/657/EC. This method was successfully applied to evaluate effluents of wastewater treatment plants (WWTP) in Portugal. Venlafaxine and fluoxetine were quantified as non-racemic mixtures (enantiomeric fraction ≠ 0.5). The enantioselective validated method was able to monitor chiral pharmaceuticals in WWTP effluents and has potential to assess the enantioselective biodegradation in bioreactors. Further application in environmental matrices as surface and estuarine waters can be exploited.
  • Treatment of a simulated wastewater amended with a chiral pharmaceuticals mixture by an aerobic granular sludge sequencing batch reactor
    Publication . Amorim, Catarina L.; Moreira, Irina S.; Ribeiro, Ana T.; Santos, Lúcia H.M.L.M.; Delerue-Matos, Cristina; Tiritan, Maria Elizabeth; Castro, Paula M. L.
    An aerobic granular sludge-sequencing batch reactor (AGS-SBR) was fed for 28-days with a simulated wastewater containing a mixture of chiral pharmaceuticals (CPs) (alprenolol, bisoprolol, metoprolol, propranolol, venlafaxine, salbutamol, fluoxetine and norfluoxetine), each at 1.3 μg L−1. AGS-SBR exhibited the highest removal efficiency for norfluoxetine, with preferential removal of the (R)-enantiomer indicating that biological-mediated processes occurred. For all other CPs, removal was non-enantioselective, occurring through biosorption onto AGS. A gradual decline of CPs removal was observed, probably related to the decrease of AGS adsorption capacity. Moreover, chemical oxygen demand (COD) content in the bulk liquid after anaerobic feeding increased, and P-release dropped, probably because the polyphosphate-accumulating organism's activity was affected. Nitrification was also affected as indicated by the ammonium effluent concentration increase. Moreover, CPs exposure promoted AGS disintegration, with decreasing granule size. After stopping CPs feeding, the AGS started to recover its compact structure, and the system returned its normal performance concerning COD- and P-removal. N-removal seemed to be a more sensitive process, as while the ammonium levels were fully restored at the end of operation, nitrite reduction was only partially restored. Results provide useful information on AGS performance during the treatment of wastewater containing pharmaceuticals, a frequent scenario in WWTP.
  • Chiral pharmaceuticals in the environment
    Publication . Ribeiro, Ana R.; Castro, Paula M. L.; Tiritan, Maria E.
    Many pharmaceutical pollutants are chiral, existing in the environment as a single enantiomer or as mixtures of the two enantiomers. In spite of their similar physical and chemical properties, the different spatial configurations lead the enantiomers to have different interactions with enzymes, receptors or other chiral molecules, which can give diverse biological response. Consequently, biodegradation process and ecotoxicity tend to be enantioselective. Despite numerous ongoing research regarding analysis and monitorization of pharmaceutical ingredients in the environment, the fate and effects of single enantiomers of chiral pharmaceuticals (CP) in the environment are still largely unknown. There are only few chiral analytical methods to accurately measure the enantiomeric fraction (EF) in environmental matrices and during biodegradation processes. Furthermore, the ecotoxicity studies usually consider the enantiomeric pair as unique compound. We reviewed the current knowledge about CP in the environment, as well as the chiral analytical methods to determine the EF in environmental matrices. The degradation and removal processes of CP of important therapeutic classes, usually detected in the environment, and their toxicity to aquatic organisms were also reviewed. On the other hand, this review demonstrate that despite the great importance of the stereochemistry in pharmaceutical science, pharmacology and organic chemistry, this is normally neglected in environmental studies. Therefore, CP in the environment need much more attention from the scientific community, and more research within this subject is required.