Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Synthesis and characterization of a 3-hydroxy-4-pyridinone chelator functionalized with a polyethylene glycol (PEG) chain aimed at sequential injection determination of iron in natural watersPublication . Mesquita, Raquel; Moniz, Tânia; Miranda, Joana L. A.; Gomes, Vânia; Silva, André M. N.; Rodriguez-Borges, J. E.; Rangel, António O. S. S.; Rangel, MariaThe synthesis of a highly water soluble 3-hydroxy-4-pyridinone ligand, functionalized with a hydrophilic ethylene glycol chain (PEG-HPO), was successfully achieved and is reported together with that of its iron (III) complex. The improved hydrophilicity of both the PEGylated 3,4-HPO ligand and its iron(III) complex were fully investigated in an analytical application and, the new chelator is proposed for the spectrophotometric sequential injection determination of iron in waters. The new ligand provided better sensitivity and a lower LOD for iron determination than that obtained for N-alkyl-3-hydroxy-4-pyridinone ligands. The developed sequential injection method presents a dynamic working range of 0.10-1.00 mg Fell. with a LOD of 48 mu g/L. Due to the use of a sequential injection system, the overall effluent production was <2 mL corresponding to the consumption of 44 mu g of PEG-HPO, 0.71 mg of NaHCO3, 0.92 mg of HNO3 and 500 mu L of sample. Two reference samples were assessed for accuracy studies and a relative deviation <5% was obtained; eight waters samples were analyzed and the results compared with the reference procedure, and no statistical difference was observed for the two sets of results.
- Iron speciation in natural waters by sequential injection analysis with a hexadentate 3-hydroxy-4-pyridinone chelator as chromogenic agentPublication . Miranda, Joana; Mesquita, Raquel; Ana, Nunes; Rangel, Maria; Rangel, António O. S. S.A sequential injection method for iron speciation in various types of natural waters was developed using a synthesised hexadentate 3-hydroxy-4-pyridinone chelator (CP256). The denticity of the ligand that allow formation of the corresponding iron (III) complex in a 1:1 stoichiometry proved to be highly advantageous, in comparison with parent bidentate, hydroxy-4-piridinone chelators, with a two fold increase of reaction sensitivity and over 65% decrease of the LOD. A solid phase extraction approach was employed to attain matrix elimination, facilitating iron (III) determination and application to high salinity waters. The combination with the total iron determination obtained by the direct reaction of the ligand resulted in iron speciation. Two detection spectrophotometric cells were tested, a conventional flow cell (CFC) and a liquid waveguide capillary cell (LWCC). The dynamic concentration ranges were 0.1–2 mg/L with the CFC detection and 0.005–0.1mg/L with the LWCC, with limit of detection of 30 mg/L and 6 mg/L, respectively. The developed method was successfully applied to a variety of natural waters.