Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 3 of 3
  • Strategies to enhance the removal of Fluoroquinolones
    Publication . Amorim, Catarina L.; Maia, Alexandra S.; Moreira, Irina S.; van Loosdrecht, Mark C.M.; Tiritan, Maria E.; Castro, Paula M.L.
    Fluoroquinolones (FQs) are broad-spectrum antibiotics that play an important role in the treatment of serious bacterial infections. Currently, several FQs are available but ciprofloxacin (CPF), ofloxacin (OFL) and norfloxacin (NOR) are amongst the most worldwide prescribed antibiotics. Antibiotics can reach wastewater treatment plants (WWTP) from different routes. Thus removal of these contaminants during the biotreatment process is of major importance in order to avoid their release to other environmental matrices. Granular sludge sequencing batch reactors (SBR) constitute a novel biofilm technology for wastewater treatment extremely promising for the treatment of effluents containing toxic compounds. Therefore, in this study a granular sludge SBR, established with activated sludge from a WWTP, was operated for the treatment of an aqueous stream containing FQs. No evidence of FQ biodegradation followed by HPLC with Fluorescence Detection was observed but FQs adsorbed to the aerobic granular sludge, being gradually released into the medium after withdrawal of the FQs in the inlet stream. In a previous study, Labrys portucalensis F11 demonstrated to be able to degrade FQs, namely OFL, NOR and CPF, when supplied individually or as a mixture, in the presence of an easy degradable carbon source. Different removal extents were obtained for the tested concentrations (ranging from 0.8 to 30 μM), but overall the uptake capacity of strain F11 for individual FQs decreased with increasing the initial FQ concentration. When supplied with a mixture FQs, strain F11 concomitantly removed each target antibiotic but a decrease on the biodegradability of FQs was observed which could be explained by competition mechanisms. The ability of Labrys portucalensis F11 to grow using the readily available carbon source while maintain its ability to degrade FQs reinforce the potential of this strain in bioaugmentation processes. As the indigenous microbial communities in biotreatment processes rarely are able to remove such contaminants, using this promising FQ-degrading strain, bioaugmentation strategies such as inoculation of the degrading strain, as a suspension or immobilized on carrier material, or using a plasmid donor strain carrying the degradative genes, could be assessed to improve FQ removal. Acknowledgments: C.L. Amorim, A.S. Maia and I.S. Moreira wish to acknowledge the research grants from Fundação para a Ciência e Tecnologia (FCT), Portugal (Ref. SFRH/BD/47109/2008, SFRH/BD/86939/2012 and SFRH/BPD/87251/2012, respectively) and Fundo Social Europeu (Programa Operacional Potencial Humano (POPH), Quadro de Referência Estratégico Nacional (QREN))). This work was supported by FCT through the projects PTDC/EBB-EBI/111699/2009 and PEst-OE/EQB/LA0016/2011.
  • Performance of aerobic granular sludge in a sequencing batch bioreactor exposed to ofloxacin, norfloxacin and ciprofloxacin
    Publication . Amorim, Catarina L.; Maia, Alexandra S.; Mesquita, Raquel B. R.; Rangel, António O.S.S.; Loosdrecht, Mark C.M. van; Tiritan, Maria Elizabeth; Castro, Paula M.L.
    A granular sludge sequencing batch reactor (SBR) was operated for 340 days for treating a synthetic wastewater containing fluoroquinolones (FQs), namely ofloxacin, norfloxacin and ciprofloxacin. The SBR was intermittently fed with FQs, at concentrations of 9 and 32 mM. No evidence of FQ biodegradation was observed but the pharmaceutical compounds adsorbed to the aerobic granular sludge, being gradually released into the medium in successive cycles after stopping the FQ feeding. Overall COD removal was not affected during the shock loadings. Activity of ammonia oxidizing bacteria and nitrite oxidizing bacteria did not seemto be inhibited by the presence of FQs (maximum of 0.03 and 0.01 mM for ammonium and nitrite in the effluent, respectively). However, during the FQs feeding, nitrate accumulation up to 1.7 mM was observed at the effluent suggesting that denitrificationwas inhibited. The activity of phosphate accumulating organismswas affected, as indicated by the decrease of P removal capacity during the aerobic phase. Exposure to the FQs also promoted disintegration of the granules leading to an increase of the effluent solid content, nevertheless the solid content at the bioreactor effluent returned to normal levelswithin ca. 1month after removing the FQs in the feed allowing recovery of the bedvolume. Denaturing gradient gel electrophoresis revealed a dynamic bacterial community with gradual changes due to FQs exposure. Bacterial isolates retrieved from the granules predominantly belonged to a- and g-branch of the Proteobacteria phylum.
  • Degradation of Fluoroquinolone Antibiotics and Identification of Metabolites/Transformation Products by LC-MS/MS
    Publication . Maia, Alexandra S.; Ribeiro, Ana R.; Amorim, Catarina L.; Barreiro, Juliana C.; Cass, Quezia B.; Castro, Paula M.L.; Tiritan, Maria E.
    Antibiotics are a therapeutic class widely found inenvironmental matrices and extensively studied due to its persistence and implications for multi-resistant bacteria development. Degradation of four fluoroquinolone antibiotics, namely Ofloxacin (OFL), Norfloxacin (NOR), Ciprofloxacin (CPF) and Moxifloxacin (MOX), at 10 mg L-1 using a mixed bacterial culture, was assessed for 60 days. The assays were followed by a developed and validated analytical method of HPLC with Fluorescence Detection using a Luna PFP (2) 3µm column. The optimized conditions allowed picturing metabolites/transformation products formation and accumulation during the process, stating an incomplete mineralization, also shown byfluoride release. OFL and MOX presented the highest (98.3%) and the lowest (80.5%) extent of degradation after 19 days of assay, respectively. Some of these intermediate compounds were identified by LCMS/MS in selected degradation samples. Most of the intermediates were already described as biodegradation and/or photodegradationproducts in different conditions, but new and/or unknown metabolites were also present.