Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Optimisation and validation of a HS-SPME-GC-IT/MS method for analysis of carbonyl volatile compounds as biomarkers in human urine: Application in a pilot study to discriminate individuals with smoking habitsPublication . Calejo, Isabel; Moreira, Nathalie; Araújo, Ana Margarida; Carvalho, Márcia; Bastos, Maria de Lourdes; Pinho, Paula Guedes deA new and simple analytical approach consisting of an automated headspace solid-phase microextraction (HS-SPME) sampler coupled to gas chromatography-ion trap/mass spectrometry detection (GC–IT/MS) with a prior derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was developed to detect volatile carbonyl metabolites with low molecular weights in human urine. A central composite design (CCD) was used to optimise the PFBHA concentration and extraction conditions that affect the efficiency of the SPME procedure. With a sample volume of 1 mL, optimal conditions were achieved by adding 300 mg/L of PFBHA and allowing the sample to equilibrate for 6 min at 62 °C and then extracting the samples for 51 min at the same temperature, using a divinylbenzene/polydimethylsiloxane (DVB/PDMS) fibre. The method allowed the simultaneous identification and quantification of 44 carbonyl compounds consisting of aldehydes, dialdehydes, heterocyclic aldehydes and ketones. The method was validated with regards to the linearity, inter- and intra-day precision and accuracy. The detection limits ranged from 0.009 to 0.942 ng/mL, except for 4-hydroxy-2-nonenal (15 ng/mL), and the quantification limits varied from 0.029 to 1.66 ng/mL, except for butanal (2.78 ng/mL), 2-butanone (2.67 ng/mL), 4-heptanone (3.14 ng/mL) and 4-hydroxy-2-nonenal (50.0 ng/mL). The method accuracy was satisfactory, with recoveries ranging from 90 to 107%. The proof of applicability of the methodology was performed in a pilot target analysis of urine samples obtained from 18 healthy smokers and 18 healthy non-smokers (control group). Chemometric supervised analysis was performed using the volatile patterns acquired for these samples and clearly showed the potential of the volatile carbonyl profiles to discriminate urine from smoker and non-smoker subjects. 5-Methyl-2-furfural (p<0.0001), 2-methylpropanal, nonanal and 2-methylbutanal (p<0.05) were identified as potentially useful biomarkers to identify smoking habits.
- Development and optimization of a HS-SPME-GC-MS methodology to quantify volatile carbonyl compounds in Port winesPublication . Moreira, Nathalie; Araújo, Ana Margarida; Rogerson, Frank; Vasconcelos, Isabel; Freitas, Victor de; Pinho, Paula Guedes deA method based on headspace solid-phase microextraction (HS-SPME) coupled to gas chromatography-triple quadrupole/mass spectrometry detection (GC-TQ/MS) with a prior derivatization step with O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride (PFBHA) was developed to quantify carbonyl compounds in different categories of Port wines. Optimal extraction conditions were obtained incubating 2 ml of wine with 2.3 g/l of PFBHA for 10 min and extracted during 20 min at 32 °C. The method was validated for 38 carbonyl compounds (alkanals, alkenals, Strecker aldehydes, dialdehydes, ketones and furan aldehydes) with regard to linearity, repeatability, inter and intra-day precision and accuracy, showing that the method is suitable for the determination of carbonyl compounds in wines. Tawny wines with ‘indication of age’ (10–40 years old) presented the highest levels of some carbonyl compounds, such as propanal, pentanal, hexanal, Strecker aldehydes, diacetyl, methyl glyoxal, 3-pentanone and 2-furfural, whereas Ruby wines were characterized by the highest amounts of some unidentified compounds.