Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Antibiotic resistance in European wastewater treatment plants mirrors the pattern of clinical antibiotic resistance prevalencePublication . Pärnänen, Katariina M. M.; Narciso-da-Rocha, Carlos; Kneis, David; Berendonk, Thomas U.; Cacace, Damiano; Do, Thi Thuy; Elpers, Christian; Fatta-Kassinos, Despo; Henriques, Isabel; Jaeger, Thomas; Karkman, Antti; Martinez, Jose Luis; Michael, Stella G.; Michael-Kordatou, Irene; O’Sullivan, Kristin; Rodriguez-Mozaz, Sara; Schwartz, Thomas; Sheng, Hongjie; Sørum, Henning; Stedtfeld, Robert D.; Tiedje, James M.; Giustina, Saulo Varela Della; Walsh, Fiona; Vaz-Moreira, Ivone; Virta, Marko; Manaia, Célia M.Integrated antibiotic resistance (AR) surveillance is one of the objectives of the World Health Organization global action plan on antimicrobial resistance. Urban wastewater treatment plants (UWTPs) are among the most important receptors and sources of environmental AR. On the basis of the consistent observation of an increasing north-to-south clinical AR prevalence in Europe, this study compared the influent and final effluent of 12 UWTPs located in seven countries (Portugal, Spain, Ireland, Cyprus, Germany, Finland, and Norway). Using highly parallel quantitative polymerase chain reaction, we analyzed 229 resistance genes and 25 mobile genetic elements. This first trans-Europe surveillance showed that UWTP AR profiles mirror the AR gradient observed in clinics. Antibiotic use, environmental temperature, and UWTP size were important factors related with resistance persistence and spread in the environment. These results highlight the need to implement regular surveillance and control measures, which may need to be appropriate for the geographic regions.
- Antibiotic resistance genes in treated wastewater and in the receiving water bodies: a pan-European survey of urban settingsPublication . Cacace, Damiano; Fatta-Kassinos, Despo; Manaia, Célia M.; Cytryn, Eddie; Kreuzinger, Norbert; Rizzo, Luigi; Karaolia, Popi; Schwartz, Thomas; Alexander, Johannes; Merlin, Christophe; Garelick, Hemda; Schmitt, Heike; Vries, Daisy de; Schwermer, Carsten U.; Meric, Sureyya; Ozkal, Can Burak; Pons, Marie-Noelle; Kneis, David; Berendonk, Thomas U.There is increasing public concern regarding the fate of antibiotic resistance genes (ARGs) during wastewater treatment, their persistence during the treatment process and their potential impacts on the receiving water bodies. In this study, we used quantitative PCR (qPCR) to determine the abundance of nine ARGs and a class 1 integron associated integrase gene in 16 wastewater treatment plant (WWTP) effluents from ten different European countries. In order to assess the impact on the receiving water bodies, gene abundances in the latter were also analysed. Six out of the nine ARGs analysed were detected in all effluent and river water samples. Among the quantified genes, intI1 and sul1 were the most abundant. Our results demonstrate that European WWTP contribute to the enrichment of the resistome in the receiving water bodies with the particular impact being dependent on the effluent load and local hydrological conditions. The ARGs concentrations in WWTP effluents were found to be inversely correlated to the number of implemented biological treatment steps, indicating a possible option for WWTP management. Furthermore, this study has identified blaOXA-58 as a possible resistance gene for future studies investigating the impact of WWTPs on their receiving water.