Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Long-term stability of a non-adapted aerobic granular sludge process treating fish canning wastewater associated to EPS producers in the core microbiome
    Publication . Paulo, Ana M. S.; Amorim, Catarina L.; Costa, Joana; Mesquita, Daniela P.; Ferreira, Eugénio C.; Castro, Paula M. L.
    The tolerance of aerobic granular sludge (AGS) to variable wastewater composition is perceived as one of its greatest advantages compared to other aerobic processes. However, research studies select optimal operational conditions for evaluating AGS performance, such as the use of pre-adapted biomass and the control of wastewater composition. In this study, non-adapted granular sludge was used to treat fish canning wastewater presenting highly variable organic, nutrient and salt levels over a period of ca. 8 months. Despite salt levels up to 14 g NaCl L−1, the organic loading rate (OLR) was found to be the main factor driving AGS performance. Throughout the first months of operation, the OLR was generally lower than 1.2 kg COD m−3 day−1, resulting in stable nitrification and low COD and phosphorous levels at the outlet. An increase in OLR up to 2.3 kg COD m−3 day−1 disturbed nitrification and COD and phosphate removal, but a decrease to average values between 1 and 1.6 kg COD m−3 day−1 led to resuming of those processes. Most of the bacteria present in the AGS core microbiome were associated to extracellular polymeric substances (EPS) production, such as Thauera and Paracoccus, which increased during the higher OLR period. Ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) species were detected in AGS biomass; while AOB were identified throughout the operation, NOB were no further identified after the period of increased OLR. Different polyphosphate-accumulating organisms (PAOs) were detected along the process: Candidatus Accumulibacter, Tetrasphaera and Gemmatimonas. A non-adapted granular sludge was able to treat the fish canning wastewater and to tolerate salinity fluctuations up to 14 g L−1. Overall, a high microbial diversity associated to EPS producers allowed to preserve bacterial groups responsible for nutrients removal, contributing to the adaptation and long-term stability of the AGS system.
  • Enhancement of methane production from 1-hexadecene by additional electron donors
    Publication . Paulo, A. M. S.; Salvador, A. F.; Alves, J. I.; Castro, R.; Langenhoff, A. A. M.; Stams, A. J. M.; Cavaleiro, A. J.
    1-Hexadecene-contaminated wastewater is produced in oil refineries and can be treated in methanogenic bioreactors, although generally at low conversion rates. In this study, a microbial culture able to degrade 1-hexadecene was enriched, and different stimulation strategies were tested for enhancing 1-hexadecene conversion to methane. Seven and three times faster methane production was obtained in cultures stimulated with yeast extract or lactate, respectively, while cultures amended with crotonate lost the ability to degrade 1-hexadecene. Methane production from 1-hexadecene was not enhanced by the addition of extra hydrogenotrophic methanogens. Bacteria closely related to Syntrophus and Smithella were detected in 1-hexadecene-degrading cultures, but not in the ones amended with crotonate, which suggests the involvement of these bacteria in 1-hexadecene degradation. Genes coding for alkylsuccinate synthase alpha-subunit were detected in cultures degrading 1-hexadecene, indicating that hydrocarbon activation may occur by fumarate addition. These findings are novel and show that methane production from 1-hexadecene is improved by the addition of yeast extract or lactate. These extra electron donors may be considered as a potential bioremediation strategy of oil-contaminated sites with bioenergy generation through methane production.