Repository logo
 

Search Results

Now showing 1 - 2 of 2
  • Antihypertensive effect of spent brewer yeast peptide
    Publication . Amorim, M.; Marques, C.; Pereira, J. O.; Guardão, L.; Martins, M. J.; Osório, H.; Moura, D.; Calhau, C.; Pinheiro, H.; Pintado, M.
    Numerous studies have investigated dietary approaches to prevent chronic lifestyle-related diseases, including hypertension. Spent brewer's yeast is the second largest byproduct originated by the brewing industry and it deserves considerable attention because of its high nutritional value, ca. 40% of its dry mass is rich in protein which can be hydrolyzed into biologically active peptides. To upgrade this byproduct, the aim of this study was initially in vitro assessment of biological properties, e.g. ACE inhibition and antioxidant activity, and then, the in vivo effect in short-term oral antihypertensive effect of hydrolyzed yeast fractions on a well characterized model to study hypertension - Spontaneously Hypertensive Rats (SHR). Here, it was demonstrated that the fraction with molecular weight below 3 kDa containing tri and tetra- peptides with hydrophobic amino acid residues - SPQW, PWW and RYW, causes the most noticeable decrease in systolic, diastolic and mean blood pressure of SHR and shows highest antioxidant effect. These properties highlight the potential use of yeast extract as nutraceutical or functional food ingredient for the management and treatment of hypertension with antioxidant effect.
  • In vitro ACE-inhibitory peptide KGYGGVSLPEW facilitates noradrenaline release from sympathetic nerve terminals: relationship with the lack of antihypertensive effect on spontaneous hypertensive rats
    Publication . Marques, Cláudia; Amorim, Maria Manuela; Pereira, Joana Odila; Guardão, Luísa; Martins, Maria João; Pintado, Manuela Estevez; Moura, Daniel; Calhau, Conceição; Pinheiro, Hélder
    This study aimed to validate the antihypertensive activity of the angiotensin-converting enzyme (ACE)-inhibitor whey protein hydrolysate (WPH) obtained through the action of proteolytic enzymes fromCynara Cardunculus. The antihypertensive activity of WPH fractions containing peptides with molecularweight below 3 kDa (Whey < 3 kDa) and 1 kDa (Whey < 1 kDa) along with the antihypertensive activity ofthree potent ACE-inhibitory peptide sequences (DKVGINYW, DAQSAPLRVY and KGYGGVSLPEW), previ-ously identified in WPH, were also investigated. In parallel, the influence of KGYGGVSLPEW (the mostpotent ACE-inhibitory peptide sequence) on AT1receptors (a common pharmacological target of anti-hypertensive therapies beyond ACE), was evaluated. The effect of WPH and fractions (300 mg/kg) andpeptide sequences (5 mg/kg) on systolic, diastolic and mean blood pressure was evaluated by telemetryon Spontaneously Hypertensive Rats (SHR), after single oral administration. Despite their ACE-inhibitoryeffect in vitro, neither WPH, Whey <3 kDa, Whey <1 kDa or peptide sequences exhibited antihyperten-sive activity. In addition, KGYGGVSLPEW was not only devoid of AT1receptor antagonism but, on thecontrary, had a similar effect to that of Ang II by facilitating the noradrenaline release from sympatheticnerve terminals. In vitro ACE blockade does not always correlate with antihypertensive activity and food-derived peptides cannot be classified as antihypertensive agents based exclusively on in vitro assays. Theabsence of an antihypertensive effect may also be a result of the interaction of these compounds withother components of the systems involved in the blood pressure control.