Browsing by Author "Vale, Filipa F."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Genome sequencing reveals a phage in Helicobacter pyloriPublication . Lehours, Philippe; Vale, Filipa F.; Bjursell, Magnus K.; Melefors, Ojar; Advani, Reza; Glavas, Steve; Guegueniat, Julia; Gontier, Etienne; Lacomme, Sabrina; Matos, António Alves; Menard, Armelle; Mégraud, Francis; Engstrand, Lars; Andersson, Anders F.Helicobacter pylori chronically infects the gastric mucosa in more than half of the human population; in a subset of this population, its presence is associated with development of severe disease, such as gastric cancer. Genomic analysis of several strains has revealed an extensive H pylori pan-genome, likely to grow as more genomes are sampled. Here we describe the draft genome sequence (63 contigs; 26× mean coverage) of H pylori strain B45, isolated from a patient with gastric mucosa-associated lymphoid tissue (MALT) lymphoma. The major finding was a 24.6-kb prophage integrated in the bacterial genome. The prophage shares most of its genes (22/27) with prophage region II of Helicobacter acinonychis strain Sheeba. After UV treatment of liquid cultures, circular DNA carrying the prophage integrase gene could be detected, and intracellular tailed phage-like particles were observed in H pylori cells by transmission electron microscopy, indicating that phage production can be induced from the prophage. PCR amplification and sequencing of the integrase gene from 341 H pylori strains from different geographic regions revealed a high prevalence of the prophage (21.4%). Phylogenetic reconstruction showed four distinct clusters in the integrase gene, three of which tended to be specific for geographic regions. Our study implies that phages may play important roles in the ecology and evolution of H pylori.
- Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migrationPublication . Vale, Filipa F.; Mégraud, Francis; Vítor, Jorge M.Background. Helicobacter pylori colonizes the human stomach and is associated with gastritis, peptic ulcer, and gastric cancer. This ubiquitous association between H. pylori and humans is thought to be present since the origin of modern humans. The H. pylori genome encodes for an exceptional number of restriction and modifications (R-M) systems. To evaluate if R-M systems are an adequate tool to determine the geographic distribution of H. pylori strains, we typed 221 strains from Africa, America, Asia, and Europe, and evaluated the expression of different 29 methyltransferases. Results. Independence tests and logistic regression models revealed that ten R-M systems correlate with geographical localization. The distribution pattern of these methyltransferases may have been originated by co-divergence of regional H. pylori after its human host migrated out of Africa. The expression of specific methyltransferases in the H. pylori population may also reflect the genetic and cultural background of its human host. Methyltransferases common to all strains, M. HhaI and M. NaeI, are likely conserved in H. pylori, and may have been present in the bacteria genome since the human diaspora out of Africa. Conclusion. This study indicates that some methyltransferases are useful geomarkers, which allow discrimination of bacterial populations, and that can be added to our tools to investigate human migrations.