Browsing by Author "Topp, Edward"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Antibiotic resistance genes in the human-impacted environment: a one health perspectivePublication . Tiedje, James M.; Wang, Fang; Manaia, Célia M.; Virta, Marko; Sheng, Hongjie; Ma, Liping; Zhang, Tong; Topp, EdwardAntibiotic resistance and its environmental component are gaining more attention as part of combating the growing healthcare crisis. The One Health framework, promulgated by many global health agencies, recognizes that antimicrobial resistance is a truly inter-domain problem in which human health, animal agriculture, and the environment are the core and interrelated components. This prospectus presents the status and issues relevant to the environmental component of antibiotic resistance, namely, the needs for advancing surveillance methodology: the environmental reservoirs and sources of resistance, namely, urban wastewater treatment plants, aquaculture production systems, soil receiving manure and biosolid, and the atmosphere which includes longer range dispersal. Recently, much work has been done describing antibiotic resistance genes in various environments; now quantitative, mechanistic, and hypothesis-driven studies are needed to identify practices that reduce real risks and maintain the effectiveness of our current antibiotics as long as possible. Advanced deployable detection methods for antibiotic resistance in diverse environmental samples are needed in order to provide the surveillance information to identify risks and define barriers that can reduce risks. Also needed are practices that reduce antibiotic use and thereby reduce selection for resistance, as well as practices that limit the dispersal of or destroy antibiotic-resistant bacteria or their resistance genes that are feasible for these varied environmental domains.
- Antibiotic resistance in the environment: expert perspectivesPublication . Manaia, Célia M.; Graham, David; Topp, Edward; Martinez, José Luis; Collignon, Peter; Gaze, William H.Antibiotic resistance is considered by different international organisations (e.g. World Health Organization, WHO; Food and Agriculture Organization of the United Nations, FAO-UN; Organisation for Economic Co-operation and Development, OECD) as not only a major threat to human life and wellbeing but also having tremendous economic impacts. Recent estimates indicate that globally at least 700,000 deaths per year are due to drug-resistant infections, with the largest and most important proportion of these attributable to antibiotic-resistant bacterial infections – and which are most often identified in hospitals. However, there are reasons to believe that antibiotic-resistant bacteria are common in the community, where they are acquired from other people, animals, foods, water and/or other environmental sources. Over recent decades, the importance of the environment in the propagation and dissemination of antibiotic-resistant bacteria has been better evidenced, with human and animal sewage representing the most important emission nodes in a complex network of transmission routes. While the relevance of environmental sources and paths of transmission are nowadays considered pivotal in any One Health discussion about antibiotic resistance, some key topics are still under debate in the scientific community. In this chapter, experts recognised in the field were invited to give their perspective on some commonly debated topics related to the risks and control of antibiotic resistance. Specifically, five invited experts gave their perspective on the relevance and control of the environmental dimensions of antibiotic resistance, based on six distinct thematic axes – transmission, critical control points, antibiotic-selective effects, interventions needed, authority’s awareness and engagement and priorities for action.
- Critical knowledge gaps and research needs related to the environmental dimensions of antibiotic resistancePublication . Larsson, D. G. Joakim; Andremont, Antoine; Bengtsson-Palme, Johan; Brandt, Kristian Koefoed; Husman, Ana Maria de Roda; Fagerstedt, Patriq; Fick, Jerker; Flach, Carl-Fredrik; Gaze, William H.; Kuroda, Makoto; Kvint, Kristian; Laxminarayan, Ramanan; Manaia, Celia M.; Nielsen, Kaare Magne; Plant, Laura; Ploy, Marie-Cecile; Segovia, Carlos; Simonet, Pascal; Smalla, Kornelia; Snape, Jason; Topp, Edward; van Hengel, Arjon J.; Verner-Jeffreys, David W.; Virta, Marko P. J.; Wellington, Elizabeth M.; Wernersson, Ann-SofieThere is growing understanding that the environment plays an important role both in the transmission of antibiotic resistant pathogens and in their evolution. Accordingly, researchers and stakeholders world-wide seek to further explore the mechanisms and drivers involved, quantify risks and identify suitable interventions. There is a clear value in establishing research needs and coordinating efforts within and across nations in order to best tackle this global challenge. At an international workshop in late September 2017, scientists from 14 countries with expertise on the environmental dimensions of antibiotic resistance gathered to define critical knowledge gaps. Four key areas were identified where research is urgently needed: 1) the relative contributions of different sources of antibiotics and antibiotic resistant bacteria into the environment; 2) the role of the environment, and particularly anthropogenic inputs, in the evolution of resistance; 3) the overall human and animal health impacts caused by exposure to environmental resistant bacteria; and 4) the efficacy and feasibility of different technological, social, economic and behavioral interventions to mitigate environmental antibiotic resistance.1
- A global multinational survey of cefotaxime-resistant coliforms in urban wastewater treatment plantsPublication . Marano, Roberto B.M.; Fernandes, Telma; Manaia, Célia M.; Nunes, Olga; Morrison, Donald; Berendonk, Thomas U.; Kreuzinger, Norbert; Tenson, Tanel; Corno, Gianluca; Fatta-Kassinos, Despo; Merlin, Christophe; Topp, Edward; Henn, Leonie; Scott, Andrew; Heß, Stefanie; Slipko, Katarzyna; Laht, Mailis; Kisand, Veljo; Cesare, Andrea Di; Karaolia, Popi; Michael, Stella G.; Petre, Alice L.; Rosal, Roberto; Pruden, Amy; Riquelme, Virginia; Agüera, Ana; Esteban, Belen; Luczkiewicz, Aneta; Kalinowska, Agnieszka; Leonard, Anne; Gaze, William H.; Adegoke, Anthony A.; Stenstrom, Thor A.; Pollice, Alfieri; Salerno, Carlo; Schwermer, Carsten U.; Krzeminski, Pawel; Guilloteau, Hélène; Donner, Erica; Drigo, Barbara; Libralato, Giovanni; Guida, Marco; Bürgmann, Helmut; Beck, Karin; Garelick, Hemda; Tacão, Marta; Henriques, Isabel; Martínez-Alcalá, Isabel; Guillén-Navarro, Jose M.; Popowska, Magdalena; Piotrowska, Marta; Quintela-Baluja, Marcos; Bunce, Joshua T.; Polo-López, Maria I.; Nahim–Granados, Samira; Pons, Marie-Noëlle; Milakovic, Milena; Udikovic-Kolic, Nikolina; Ory, Jérôme; Ousmane, Traore; Caballero, Pilar; Oliver, Antoni; Rodriguez-Mozaz, Sara; Balcazar, Jose L.; Jäger, Thomas; Schwartz, Thomas; Yang, Ying; Zou, Shichun; Lee, Yunho; Yoon, Younggun; Herzog, Bastian; Mayrhofer, Heidrun; Prakash, Om; Nimonkar, Yogesh; Heath, Ester; Baraniak, Anna; Abreu-Silva, Joana; Choudhury, Manika; P. Munoz, Leonardo; Krizanovic, Stela; Brunetti, Gianluca; Maile-Moskowitz, Ayella; Brown, Connor; Cytryn, EddieThe World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum β-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status.
