Percorrer por autor "Soucaille, Philippe"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Metabolic engineering of clostridium acetobutylicum for the industrial production of 1,3-propanediol from glycerolPublication . González-Pajuelo, María; Meynial-Salles, Isabelle; Mendes, Filipa; Andrade, José Carlos; Vasconcelos, Isabel; Soucaille, PhilippeClostridium butyricum is to our knowledge the best natural 1,3-propanediol producer from glycerol and the only microorganism identified so far to use a coenzyme B12-independent glycerol dehydratase. However, to develop an economical process of 1,3-propanediol production, it would be necessary to improve the strain by a metabolic engineering approach. Unfortunately, no genetic tools are currently available for C. butyricum and all our efforts to develop them have been so far unsuccessful. To obtain a better ‘‘vitamin B12-free’’ biological process, we developed a metabolic engineering strategy with Clostridium acetobutylicum. The 1,3- propanediol pathway from C. butyricum was introduced on a plasmid in several mutants of C. acetobutylicum altered in product formation. The DG1(pSPD5) recombinant strain was the most efficient strain and was further characterized from a physiological and biotechnological point of view. Chemostat cultures of this strain grown on glucose alone produced only acids (acetate, butyrate and lactate) and a high level of hydrogen. In contrast, when glycerol was metabolized in chemostat culture, 1,3-propanediol became the major product, the specific rate of acid formation decreased and a very low level of hydrogen was observed. In a fed-batch culture, the DG1(pSPD5) strain was able to produce 1,3-propanediol at a higher concentration (1104mM) and productivity than the natural producer C. butyricum VPI 3266. Furthermore, this strain was also successfully used for very long term continuous production of 1,3-propanediol at high volumetric productivity (3 g L⁻¹ h⁻¹) and titer (788 mM).
- Microbial conversion of glycerol to 1,3-propanediol$ephysiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1 (pSPD5)Publication . González-Pajuelo, María; Meynial-Salles, Isabelle; Mendes, Filipa; Soucaille, Philippe; Vasconcelos, IsabelClostridium acetobutylicum is not able to grow on glycerol as the sole carbon source since it cannot reoxidize the excess of NADH generated by glycerol catabolism. Nevertheless, when the pSPD5 plasmid, carrying the NADH-consuming 1,3-propanediol pathway from C. butyricum VPI 3266, was introduced into C. acetobutylicum DG1, growth on glycerol was achieved, and 1,3-propanediol was produced. In order to compare the physiological behavior of the recombinant C. acetobutylicum DG1(pSPD5) strain with that of the natural 1,3- propanediol producer C. butyricum VPI 3266, both strains were grown in chemostat cultures with glycerol as the sole carbon source. The same “global behavior” was observed for both strains: 1,3-propanediol was the main fermentation product, and the qH2 flux was very low. However, when looking at key intracellular enzyme levels, significant differences were observed. Firstly, the pathway for glycerol oxidation was different: C. butyricum uses a glycerol dehydrogenase and a dihydroxyacetone kinase, while C. acetobutylicum uses a glycerol kinase and a glycerol-3-phosphate dehydrogenase. Secondly, the electron flow is differentially regulated: (i) in C. butyricum VPI 3266, the in vitro hydrogenase activity is 10-fold lower than that in C. acetobutylicum DG1(pSPD5), and (ii) while the ferredoxin-NAD reductase activity is high and the NADH-ferredoxin reductase activity is low in C. acetobutylicum DG1(pSPD5), the reverse is observed for C. butyricum VPI 3266. Thirdly, lactate dehydrogenase activity is only detected in the C. acetobutylicum DG1(pSPD5) culture, explaining why this microorganism produces lactate.
- Regulation of metabolic shifts in Clostridium acetobutylicum ATCC 824Publication . Girbala, Laurence; Crouxa, Christian; Vasconcelos, Isabel; Soucaille, PhilippeAlcohol formation was initiated in continuous cultures of Clostridium acetobutylicum under distinct steady-state conditions: (i) in glucose-limited cultures established at low operating pH with formation of butanol, ethanol and acetone (induction of the solventogenesis) in which cells contained normal levels of NADH and a high level of ATP and butyric acid; and (ii) by increasing the NADH pressure at neutral pH in glucose-limited cultures after addition of Neutral red, or in glucose-glycerol or glucose-glycerol-pyruvate grown cultures, with a strictly alcohologenic metabolism (no acetone produced) associated with high levels of intracellular NADH and various levels of ATP. These two different metabolic shift systems are correlated with the expression of different genes involved in the solvent-forming pathways and the electron flow distribution. A high NADH level leading to butanol and ethanol formation was accompanied by increased activities of the NADH-dependent alcohol and butyraldehyde dehydrogenases, and ferredoxin:NAD(P)+ reductases, and by decreased activities of the NADH:ferredoxin reductase. This last group of enzymes constitutes the key enzymes regulating electron flow, since no change in hydrogenase activity was observed. On the other hand, classical solventogenesis appears to be characterized by high levels of expression of the NADPH-dependent alcohol and butyraldehyde dehydrogenases, and of the two enzymes involved in the acetone-forming pathway, while the ferredoxin:NAD(P)+ reductases were not synthesized. A decrease of the in vitro hydrogenase activity explains the lower hydrogen generation. In addition, the regulation of the intracellular pH was different between the alcohologenic culture grown at neutral pH and the solventogenic cultures grown at low pH. An inversion of the transmembrane pH gradient was observed during the production of alcohol at neutral pH and was related to a lower in vivo specific rate of hydrogen production while in the cultures grown at low pH the transmembrane pH generation was not linked to the F1F0 ATPase activity.
