Browsing by Author "Rebelo, Mariana B."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Development of a postbiotic-based orodispersible film to prevent dysbiosis in the oral cavityPublication . Rebelo, Mariana B.; Oliveira, Cláudia S.; Tavaria, Freni K.Background: Oral diseases affect over three billion peopleand are among the most commonly observed infections worldwide. Recent studies have shown that controlling the ecology of the oralome is more effective in reducing the risk of caries than the complete removal of both harmful and beneficial microorganisms. This work aimed to develop a strategy for preventing dysbiosis in the oral cavity by applying a postbiotic-based orodispersible film. Methods: Lactiplantibacillus plantarum 226V and Lacticaseibacillus paracasei L26 were cultured in De Man–Rogosa–Sharpe (MRS) broth for 48 hours, followed by centrifugation and filtration. Then, the resultant postbiotics were then subjected to various dilutions (10% (v/v), 20% (v/v), 40% (v/v), 60% (v/v) and 100% (v/v)) and co-incubated with Streptococcus mutans. Antimicrobial efficacy, minimal inhibitory concentration, the time required to inhibit S. mutans growth, and antibiofilm properties of the postbiotics were assessed. Subsequently, an orodispersible film comprising polymers and plasticizers, namely Xanthan gum, maltodextrin, and glycerol, was developed as a vehicle for postbiotic delivery. Formulation optimization, physical property evaluation, and cytotoxicity against the TR146 human oral cell line (TR146 cell line) were conducted. Results: Postbiotics demonstrated antimicrobial and antibiofilm activity against S. mutans following 24-hour co-incubation. The minimal inhibitory concentration for combined postbiotics administration was 20% (v/v). Remarkably, 79.6 ± 8.15% inhibition of biofilm formation was achieved using 100% (v/v) of the postbiotic derived from L. plantarum 226V. Incorporating postbiotics did not compromise the dissolution time of orodispersible films, all exceeding 20 minutes. Furthermore, solubility improved following postbiotic addition, facilitating ease of handling. Importantly, postbiotic-impregnated orodispersible films were non-cytotoxic when exposed to the TR146 cell line. Conclusions: These findings underscore the potential of orodispersible films loaded with postbiotics as a promising potential intervention for oral dysbiosis.
- Novel strategies for preventing dysbiosis in the oral cavityPublication . Rebelo, Mariana B.; Oliveira, Cláudia S.; Tavaria, Freni K.Oral diseases affect over three billion people worldwide, making it one of the most common infections. Recent studies show that one approach to reducing the risk of chronic infections, such as caries, gingivitis, periodontitis, and halitosis, is to control the ecology of the oral microbiome instead of completely removing both the harmful and beneficial microorganisms. This is based on the knowledge that oral diseases are not caused by a single pathogen but rather by a shift in the homeostasis of the entire microbiota, a process known as dysbiosis. Consequently, it is of the utmost importance to implement strategies that are able to prevent and control oral dysbiosis to avoid serious complications, including heart, lung, and other systemic diseases. Conventional treatments include the use of antibiotics, which further disrupt the equilibrium in the oral microbiota, together with the mechanical removal of the decayed cavity area following its formation. Therefore, it is imperative to implement alternative strategies with the potential to overcome the disadvantages of the current therapy, namely, the use of broad-spectrum antibiotics. In this sense, probiotics and postbiotics have received particular attention since they can modulate the oral microbiota and decrease the dysbiosis rate in the oral cavity. However, their mechanisms of action need to be addressed to clarify and drive their possible applications as preventive strategies. In this sense, this review provides an overview of the potential of probiotics and postbiotics, focusing on their antimicrobial and antibiofilm activities as well as their ability to modulate the inflammatory response. Finally, it also showcases the main advantages and disadvantages of orodispersible films—a promising delivery mechanism for both probiotics and postbiotics to target oral dysbiosis.