Browsing by Author "Raithel, Johanna"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Postmitotic differentiation of human monocytes requires cohesin-structured chromatinPublication . Minderjahn, Julia; Fischer, Alexander; Maier, Konstantin; Mendes, Karina; Nuetzel, Margit; Raithel, Johanna; Stanewsky, Hanna; Ackermann, Ute; Månsson, Robert; Gebhard, Claudia; Rehli, MichaelCohesin is a major structural component of mammalian genomes and is required to maintain loop structures. While acute depletion in short-term culture models suggests a limited importance of cohesin for steady-state transcriptional circuits, long-term studies are hampered by essential functions of cohesin during replication. Here, we study genome architecture in a postmitotic differentiation setting, the differentiation of human blood monocytes (MO). We profile and compare epigenetic, transcriptome and 3D conformation landscapes during MO differentiation (either into dendritic cells or macrophages) across the genome and detect numerous architectural changes, ranging from higher level compartments down to chromatin loops. Changes in loop structures correlate with cohesin-binding, as well as epigenetic and transcriptional changes during differentiation. Functional studies show that the siRNA-mediated depletion of cohesin (and to a lesser extent also CTCF) markedly disturbs loop structures and dysregulates genes and enhancers that are primarily regulated during normal MO differentiation. In addition, gene activation programs in cohesin-depleted MO-derived macrophages are disturbed. Our findings implicate an essential function of cohesin in controlling long-term, differentiation- and activation-associated gene expression programs.
- The epigenetic pioneer EGR2 initiates DNA demethylation in differentiating monocytes at both stable and transient binding sitesPublication . Mendes, Karina; Schmidhofer, Sandra; Minderjahn, Julia; Glatz, Dagmar; Kiesewetter, Claudia; Raithel, Johanna; Wimmer, Julia; Gebhard, Claudia; Rehli, MichaelThe differentiation of human blood monocytes (MO), the post-mitotic precursors of macrophages (MAC) and dendritic cells (moDC), is accompanied by the active turnover of DNA methylation, but the extent, consequences and mechanisms of DNA methylation changes remain unclear. Here, we profile and compare epigenetic landscapes during IL-4/GM-CSF-driven MO differentiation across the genome and detect several thousand regions that are actively demethylated during culture, both with or without accompanying changes in chromatin accessibility or transcription factor (TF) binding. We further identify TF that are globally associated with DNA demethylation processes. While interferon regulatory factor 4 (IRF4) is found to control hallmark dendritic cell functions with less impact on DNA methylation, early growth response 2 (EGR2) proves essential for MO differentiation as well as DNA methylation turnover at its binding sites. We also show that ERG2 interacts with the 5mC hydroxylase TET2, and its consensus binding sequences show a characteristic DNA methylation footprint at demethylated sites with or without detectable protein binding. Our findings reveal an essential role for EGR2 as epigenetic pioneer in human MO and suggest that active DNA demethylation can be initiated by the TET2-recruiting TF both at stable and transient binding sites.