Browsing by Author "Nicolelis, Miguel A. L."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- A closed loop brain-machine interface for epilepsy control using dorsal column electrical stimulationPublication . Pais-Vieira, Miguel; Yadav, Amol P.; Moreira, Derek; Guggenmos, David; Santos, Amílcar; Lebedev, Mikhail; Nicolelis, Miguel A. L.Although electrical neurostimulation has been proposed as an alternative treatment for drug-resistant cases of epilepsy, current procedures such as deep brain stimulation, vagus, and trigeminal nerve stimulation are effective only in a fraction of the patients. Here we demonstrate a closed loop brainmachine interface that delivers electrical stimulation to the dorsal column (DCS) of the spinal cord to suppress epileptic seizures. Rats were implanted with cortical recording microelectrodes and spinal cord stimulating electrodes, and then injected with pentylenetetrazole to induce seizures. Seizures were detected in real time from cortical local field potentials, after which DCS was applied. This method decreased seizure episode frequency by 44% and seizure duration by 38%. We argue that the therapeutic effect of DCS is related to modulation of cortical theta waves, and propose that this closedloop interface has the potential to become an effective and semi-invasive treatment for refractory epilepsy and other neurological disorders.
- Frequency-specific coupling in fronto-parieto-occipital cortical circuits underlie active tactile discriminationPublication . Kunicki, Carolina; Moioli, Renan C.; Pais-Vieira, Miguel; Peres, André Salles Cunha; Morya, Edgard; Nicolelis, Miguel A. L.Processing of tactile sensory information in rodents is critically dependent on the communication between the primary somatosensory cortex (S1) and higher-order integrative cortical areas. Here, we have simultaneously characterized single-unit activity and local field potential (LFP) dynamics in the S1, primary visual cortex (V1), anterior cingulate cortex (ACC), posterior parietal cortex (PPC), while freely moving rats performed an active tactile discrimination task. Simultaneous single unit recordings from all these cortical regions revealed statistically significant neuronal firing rate modulations during all task phases (anticipatory, discrimination, response, and reward). Meanwhile, phase analysis of pairwise LFP recordings revealed the occurrence of long-range synchronization across the sampled fronto-parieto-occipital cortical areas during tactile sampling. Causal analysis of the same pairwise recorded LFPs demonstrated the occurrence of complex dynamic interactions between cortical areas throughout the fronto-parietal-occipitl loop. These interactions changed significantly between cortical regions as a function of frequencies (i.e. beta, theta and gamma) and according to the different phases of the behavioral task. Overall, these findings indicate that active tactile discrimination by rats is characterized by much more widespread and dynamic complex interactions within the fronto-parieto-occipital cortex than previously anticipated.
