Browsing by Author "Fernandes, Rosa"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Blueberry consumption challenges hepatic mitochondrial bioenergetics and elicits transcriptomics reprogramming in healthy wistar ratsPublication . Nunes, Sara; Viana, Sofia D.; Preguiça, Inês; Alves, André; Fernandes, Rosa; Teodoro, João S.; Figueirinha, Artur; Salgueiro, Lígia; Silva, Sara; Jarak, Ivana; Carvalho, Rui A.; Cavadas, Cláudia; Rolo, Anabela P.; Palmeira, Carlos M.; Pintado, Maria M.; Reis, FlávioAn emergent trend of blueberries’ (BB) “prophylactic” consumption, due to their phytochemicals’ richness and well-known health-promoting claims, is widely scaled-up. However, the benefits arising from BB indiscriminate intake remains puzzling based on incongruent preclinical and human data. To provide a more in-depth elucidation and support towards a healthier and safer consumption, we conducted a translation-minded experimental study in healthy Wistar rats that consumed BB in a juice form (25 g/kg body weight (BW)/day; 14 weeks’ protocol). Particular attention was paid to the physiological adaptations succeeding in the gut and liver tissues regarding the acknowledged BB-induced metabolic benefits. Systemically, BB boosted serum antioxidant activity and repressed the circulating levels of 3-hydroxybutyrate (3-HB) ketone bodies and 3-HB/acetoacetate ratio. Moreover, BB elicited increased fecal succinic acid levels without major changes on gut microbiota (GM) composition and gut ultra-structural organization. Remarkably, an accentuated hepatic mitochondrial bioenergetic challenge, ensuing metabolic transcriptomic reprogramming along with a concerted anti-inflammatory pre-conditioning, was clearly detected upon long-term consumption of BB phytochemicals. Altogether, the results disclosed herein portray a quiescent mitochondrial-related metabolomics and hint for a unified adaptive response to this nutritional challenge. The beneficial or noxious consequences arising from this dietary trend should be carefully interpreted and necessarily claims future research.
- Blueberry counteracts prediabetes in a hypercaloric diet-induced rat model and rescues hepatic mitochondrial bioenergeticsPublication . Nunes, Sara; Viana, Sofia D.; Preguiça, Inês; Alves, André; Fernandes, Rosa; Teodoro, João S.; Matos, Patrícia; Figueirinha, Artur; Salgueiro, Lígia; André, Alexandra; Silva, Sara; Jarak, Ivana; Carvalho, Rui A.; Cavadas, Cláudia; Rolo, Anabela P.; Palmeira, Carlos M.; Pintado, Maria M.; Reis, FlávioThe paramount importance of a healthy diet in the prevention of type 2 diabetes is now well recognized. Blueberries (BBs) have been described as attractive functional fruits for this purpose. This study aimed to elucidate the cellular and molecular mechanisms pertaining to the protective impact of blueberry juice (BJ) on prediabetes. Using a hypercaloric diet-induced prediabetic rat model, we evaluated the effects of BJ on glucose, insulin, and lipid profiles; gut microbiota composition; intestinal barrier integrity; and metabolic endotoxemia, as well as on hepatic metabolic surrogates, including several related to mitochondria bioenergetics. BJ supplementation for 14 weeks counteracted diet-evoked metabolic deregulation, improving glucose tolerance, insulin sensitivity, and hypertriglyceridemia, along with systemic and hepatic antioxidant properties, without a significant impact on the gut microbiota composition and related mechanisms. In addition, BJ treatment effectively alleviated hepatic steatosis and mitochondrial dysfunction observed in the prediabetic animals, as suggested by the amelioration of bioenergetics parameters and key targets of inflammation, insulin signaling, ketogenesis, and fatty acids oxidation. In conclusion, the beneficial metabolic impact of BJ in prediabetes may be mainly explained by the rescue of hepatic mitochondrial bioenergetics. These findings pave the way to support the use of BJ in prediabetes to prevent diabetes and its complications.
- Thermo-responsive microemulsions containing deep eutectic-based antibiotic formulations for improved treatment of resistant bacterial ocular infectionsPublication . Pedro, Sónia N.; Gomes, Ana T. P. C.; Vilela, Carla; Vitorino, Carla; Fernandes, Rosa; Almeida, Adelaide; Amaral, Maria Helena; Freire, Mara G.; Silvestre, Armando J. D.; Freire, Carmen S. R.The rise of antibiotic resistant strains, as methicillin-resistant Staphylococcus aureus (MRSA), challenges the current treatment of infections. In the case of ocular infections, antibiotic eye drops are commonly prescribed. However, their efficacy is usually compromised by the low viscosity of these formulations and the eye drainage. To overcome these drawbacks, deep eutectic solvent (DES)-based microemulsions with thermo-responsive character, that increase their viscosity upon contact with the eye have been developed. Using betaine-based DES aqueous solutions, it is possible to increase up to 140-fold the water solubility of the antibiotic chloramphenicol, typically used in ocular infections. The DES solutions containing the antibiotic are applied as water phases in water-in-oil-in-water (w/o/w) microemulsions, being stable up to 3 months. Furthermore, a sustained-release and a higher permeation of the antibiotic through the cornea than that of commercialized eye drops is achieved, while presenting comparable cytotoxicity profiles (cell viabilities > 88%). Higher antimicrobial activity and faster action of the antibiotic in case of infection with MRSA is observed compared to the commercialized formulations (7 log10 of inactivation in 48 h vs 72 h). Overall, these microemulsions comprising DES are a promising strategy to achieve higher antibiotic effectiveness in the treatment of resistant bacterial infections.
- Unraveling the photodynamic activity of cationic benzoporphyrin-based photosensitizers against bladder cancer cellsPublication . Gomes, Ana T. P. C.; Neves, M. Graça P. M. S.; Fernandes, Rosa; Ribeiro, Carlos F.; Cavaleiro, José A. S.; Moura, Nuno M. M.In this study, we report the preparation of new mono-charged benzoporphyrin complexes by reaction of the appropriate neutral benzoporphyrin with (2,2′-bipyridine)dichloroplatinum(II) and of the analogs’ derivatives synthesized through alkylation of the neutral scaffold with iodomethane. All derivatives were incorporated into polyvinylpyrrolidone (PVP) micelles. The ability of the resultant formulations to generate reactive oxygen species was evaluated, mainly the singlet oxygen formation. Then, the capability of the PVP formulations to act as photosensitizers against bladder cancer cells was assessed. Some of the studied formulations were the most active photosensitizers causing a decrease in HT-1376 cells’ viability. This creates an avenue to further studies related to bladder cancer cells.