Browsing by Author "Costa-Pinto, Ana R."
Now showing 1 - 7 of 7
Results Per Page
Sort Options
- Chemical and antioxidant properties of solvent and enzyme-assisted extracts of Fucus vesiculosus and Porphyra dioicaPublication . Nova, Paulo; Cunha, Sara A.; Costa-Pinto, Ana R.; Gomes, Ana MariaExtraction strategies impact the efficiency and nature of extracted compounds. This work assessed the chemical composition and antioxidant capacity of ethanolic, hydroethanolic, and aqueous versus enzyme-assisted extracts (isolated or with the sequential use of alcalase®, cellulase®, and viscozyme®) of the macroalgae Fucus vesiculosus (brown, Phaeophyceae) and Porphyra dioica (red, Rhodophyta. For both macroalgae, enzyme-assisted extraction (EAE) was the most efficient process compared to solvent-assisted extraction (SAE), independent of solvent. Fucus vesiculosus extraction yields were higher for EAE than for SAE (27.4% to 32.2% and 8.2% to 30.0%, respectively). Total phenolics content (TPC) was at least 10-fold higher in EAE extracts (229.2 to 311.3 GAE/gextract) than in SAE (4.34 to 19.6 GAE/gextract) counterparts and correlated well with antioxidant capacity (ABTS and ORAC methods), with EAE achieving values up to 8- and 2.6-fold higher than those achieved by SAE, respectively. Porphyra dioica followed F. vesiculosus’s trend for extraction yields (37.5% to 51.6% for EAE and 5.7% to 35.1% for SAE), TPC, although of a lower magnitude, (0.77 to 8.95 GAE/gextract for SE and 9.37 to 14.73 GAE/gextract for EAE), and antioxidant capacity. Aqueous extracts registered the highest DPPH values for both macroalgae, with 2.3 µmol TE/gextract and 13.3 µmol TE/gextract for F. vesiculosus and P. dioica, respectively. EAE was a more efficient process in the extraction of soluble protein and reducing sugars in comparison to SAE. Furthermore, an improved effect of enzyme-assisted combinations was observed for almost all analyzed parameters. This study shows the promising application of enzyme-assisted extraction for the extraction of valuable compounds from F. vesiculosus and P.dioica, making them excellent functional ingredients for a wide range of health and food industrial applications.
- Chitosan and codfish hydroxyapatite formulation to be used as coating material to circumvent periprosthetic joint infectionsPublication . Costa-Pinto, Ana R.; Lemos, Ana L.; Piccirillo, Clara; Tavaria, Freni K; Pintado, Manuela E.
- Influence of PDLA nanoparticles size on drug release and interaction with cellsPublication . Cartaxo, Ana Luísa; Costa-Pinto, Ana R.; Martins, Albino; Faria, Susana; Gonçalves, Virgínia M. F.; Tiritan, Maria Elizabeth; Ferreira, Helena; Neves, Nuno M.Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.
- It comes from the sea: macroalgae-derived bioactive compounds with anti-cancer potentialPublication . Nova, Paulo; Gomes, Ana Maria; Costa-Pinto, Ana R.Nature derived compounds represent a valuable source of bioactive molecules with enormous potential. The sea is one of the richest environments, full of skilled organisms, where algae stand out due to their unique characteristics. Marine macroalgae adapt their phenotypic characteristics, such as chemical composition, depending on the environmental conditions where they live. The compounds produced by these organisms show tremendous potential to be used in the biomedical field, due to their antioxidant, anti-inflammatory, immunomodulatory, and anti-cancer properties. Cancer is one of the deadliest diseases in the world, and the lack of effective treatments highlights the urgent need for the development of new therapeutic strategies. This review provides an overview of the current advances regarding the anti-cancer activity of the three major groups of marine macroalgae, i.e., red algae (Rhodophyta), brown algae (Phaeophyceae), and green algae (Chlorophyta) on pancreatic, lung, breast, cervical, colorectal, liver, and gastric cancers as well as leukemia and melanoma. In addition, future perspectives, and limitations regarding this field of work are also discussed.
- Sargassum muticum and Osmundea pinnatifida enzymatic extracts: chemical, structural, and cytotoxic characterizationPublication . Rodrigues, Dina; Costa-Pinto, Ana R.; Sousa, Sérgio; Vasconcelos, Marta W.; Pintado, Manuela M.; Pereira, Leonel; Rocha-Santos, Teresa A. P.; Costa, João P. da; Silva, Artur M. S.; Duarte, Armando C.; Gomes, Ana M. P.; Freitas, Ana C.Seaweeds, which have been widely used for human consumption, are considered a potential source of biological compounds, where enzyme-assisted extraction can be an efficient method to obtain multifunctional extracts. Chemical characterization of Sargassum muticum and Osmundea pinnatifida extracts obtained by Alcalase and Viscozyme assisted extraction, respectively, showed an increment of macro/micro elements in comparison to the corresponding dry seaweeds, while the ratio of Na/K decreased in both extracts. Galactose, mannose, xylose, fucose, and glucuronic acid were the main monosaccharides (3.2–27.3 mg/glyophilized extract) present in variable molar ratios, whereas low free amino acids content and diversity (1.4–2.7 g/100gprotein) characterized both extracts. FTIR-ATR and 1H NMR spectra confirmed the presence of important polysaccharide structures in the extracts, namely fucoidans from S. muticum or agarans as sulfated polysaccharides from O. pinnatifida. No cytotoxicity against normal mammalian cells was observed from 0 to 4 mglyophilized extract/mL for both extracts. The comprehensive characterization of the composition and safety of these two extracts fulfils an important step towards their authorized application for nutritional and/or nutraceutical purposes.
- Thermal annealed silk fibroin membranes for periodontal guided tissue regenerationPublication . Geão, Catarina; Costa-Pinto, Ana R.; Cunha-Reis, Cassilda; Ribeiro, Viviana P.; Vieira, Sílvia; Oliveira, Joaquim M.; Reis, Rui L.; Oliveira, A. L.Guided tissue regeneration (GTR) is a surgical procedure applied in the reconstruction of periodontal defects, where an occlusive membrane is used to prevent the fast-growing connective tissue from migrating into the defect. In this work, silk fibroin (SF) membranes were developed for periodontal guided tissue regeneration. Solutions of SF with glycerol (GLY) or polyvinyl alcohol (PVA) where prepared at several weight ratios up to 30%, followed by solvent casting and thermal annealing at 85 °C for periods of 6 and 12 h to produce high flexible and stable membranes. These were characterized in terms of their morphology, physical integrity, chemical structure, mechanical and thermal properties, swelling capability and in vitro degradation behavior. The developed blended membranes exhibited high ductility, which is particular relevant considering the need for physical handling and adaptability to the defect. Moreover, the membranes were cultured with human periodontal ligament fibroblast cells (hPDLs) up to 7 days. Also, the higher hydrophilicity and consequent in vitro proteolytic degradability of these blends was superior to pure silk fibroin membranes. In particular SF/GLY blends demonstrated to support high cell adhesion and viability with an adequate hPDLs’ morphology, make them excellent candidates for applications in periodontal regeneration.
- Ultrasound sonication prior to electrospinning tailors silk fibroin/PEO membranes for periodontal regenerationPublication . Serôdio, Ricardo; Schickert, Sónia L.; Costa-Pinto, Ana R.; Dias, Juliana R.; Granja, Pedro L.; Yang, Fang; Oliveira, Ana L.In this study, silk fibroin (SF)/poly(ethylene oxide) (PEO) membranes were designed and fabricated by combining ultrasound sonication prior to electrospinning (0 to 20 min) as a strategy to physically control the rheological properties of solutions (10 to 30% w/v PEO) and to improve the spinnability of the system. PEO has proved to be essential as a co-spinning agent to assure good membrane reproducibility and enough flexibility for clinical manipulation. The rheological tests indicated that sonication greatly increased the viscosity of SF/PEO solutions and further enhanced the quality of the produced electrospun fibers with consequent improved mechanical properties in dry and wet conditions. By tuning the viscosity of the solutions using a simple sonication step prior to electrospinning, it was possible to induce water stability in the as-electrospun matrix, as demonstrated by infra-red spectroscopy. This reduced complexity in the process since it was not necessary to concentrate silk prior to electrospinning while avoiding the use of toxic solvents to perform a post-processing stabilization treatment which usually causes dimensional changes to the SF materials. Sonication pre-treatment allowed for minimizing the amount of synthetic polymer used to achieve the desirable mechanical properties (with the modulus ranging between 90 and 170 MPa), while avoiding a further water stabilization treatment. It also had a positive impact in the in vitro cell behavior of human primary periodontal ligament cells (hPDLs), resulting in a marked increase in cell proliferation. The present developed work constitutes a step forward towards simplicity and a better fabrication control of viable electrospun SF-based membranes for periodontal regeneration.