Browsing by Author "Borges, M. T."
Now showing 1 - 4 of 4
Results Per Page
Sort Options
- Constructed Wetlands for freshwater and saline aquaculture wastewater treatment: a microcosm experiencePublication . Jesus, J. M.; Borges, M. T.; Calheiros, Cristina S. C.; Castro, Paula M. L.The aquaculture industry discharges large volumes of nutrient rich wastewater, contributing to eutrophication events. Recent culture intensification methodologies such as recirculation (RAS) and shallow raceway (SRS) systems discharge wastewater with even higher nutrient concentrations, though at lower volumes (Rana et al., 2005). Hence, efluent treatment options are of vital importance. Constructed wetlands (CWs) are a possible but underexplored treatment solution even for high salinity situations (Lymbery et al., 2006) consisting of planted shallow channels, relying upon biological, physical and chemical processes to treat wastewater (EPA, 2000). Therefore, this study aims to extend the knowledge on the possible use of CWs for aquaculture wastewater treatment, either fresh or saline. To fulfill this goal, several microcosms were created simulating subsurface systems with HRT = 7 days and planted with Typha latifolia. Substrate used was expanded clay 8 – 12.5 mm Ø. Macrophyte survival, growth, and nutrient removal (phosphate, nitrite, nitrate and ammonia) were assessed over a period of 4 weeks. Freshwater (simulated) and saline (real) fish farm effluents (recirculation SRS, 2.4% salinity) were tested. Results showed that plants adapted better to freshwater conditions exhibiting higher growth rate. Plants at 2.4% salinity did not growth in height after 2 weeks, but survival remained high.The microcosm wetland system was able to treat the effluent by removing 61%, 78% and 98% of NH4, NO2 and PO4, respectively, in fresh water, and 94%; 78%, 34% and 100% of NH4, NO2, NO3 and PO4, respectively, in saline wastewater. An improvement of removal with time was observed, suggesting the existence of a system adaptation period. The microcosm treatment was able to reduce nutrient concentrations to legally acceptable values. Hence, constructed wetlands can be an adequate solution for aquaculture efffluent treatment. Further studies are necessary, however, to achieve a better adaptation of the plant used to salinity.
- Constructed wetlands for freshwater and saline aquaculture wastewater treatment: a microcosm experiencePublication . Jesus, J. M.; Borges, M. T.; Calheiros, C.; Castro, P. M. L.
- Feasibility of typha latifolia for high salinity effluent treatment in constructed wetlands for integration in resource management systemsPublication . Jesus, J. M.; Calheiros, C. S. C.; Castro, P. M. L.; Borges, M. T.High salinity wastewaters have limited treatment options due to the occurrence of salt inhibition in conventional biological treatments. Using recirculating marine aquaculture effluents as a case study, this work explored the use of Constructed Wetlands as a treatment option for nutrient and salt loads reduction. Three different substrateswere tested for nutrient adsorption, of which expanded clay performed better. This substrate adsorbed 0.31 mg kg−1 of NH4 +−N and 5.60 mg kg−1 of PO4 3−−P and 6.9 mg kg−1 dissolved salts after 7 days of contact. Microcosms with Typha latifolia planted in expanded clay and irrigated with aquaculture wastewater (salinity 2.4%, 7 days hydraulic retention time, for 4 weeks), were able to remove 94%NH4 +−N(inlet 0.25±0.13 mg L−1), 78%NO2 −−N(inlet 0.78±0.62 mg L−1), 46% NO3 −−N (inlet 18.83 ± 8.93 mg L−1) whereas PO4 3−−P was not detected (inlet 1.41 ± 0.21 mg L−1). Maximum salinity reductions of 52% were observed. Despite some growth inhibition, plants remained viable, with 94% survival rate. Daily treatment dynamics studies revealed rapid PO4 3−−P adsorption, unbalancing the N:P ratio and possibly affecting plant development. An integrated treatment approach, coupled with biomass valorization, is suggested to provide optimal resource management possibilities.
- Viability of constructed wetlands for saline wastewater treatment and plant biomass energy valorizationPublication . Jesus, João M.; Borges, M. T.; Calheiros, C.; Castro, P. M. L.
