Repository logo
 
Publication

Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration

dc.contributor.authorRibeiro, Viviana P.
dc.contributor.authorMorais, Alain da Silva
dc.contributor.authorMaia, F. Raquel
dc.contributor.authorCanadas, R. F.
dc.contributor.authorCosta, João B.
dc.contributor.authorOliveira, Ana L.
dc.contributor.authorOliveira, Joaquim M.
dc.contributor.authorReis, Rui L.
dc.date.accessioned2018-09-13T16:55:34Z
dc.date.available2018-09-13T16:55:34Z
dc.date.issued2018
dc.description.abstractSeveral processing technologies and engineering strategies have been combined to create scaffolds with superior performance for efficient tissue regeneration. Cartilage tissue is a good example of that, presenting limited self-healing capacity together with a high elasticity and load-bearing properties. In this work, novel porous silk fibroin (SF) scaffolds derived from horseradish peroxidase (HRP)-mediated crosslinking of highly concentrated aqueous SF solution (16 wt%) in combination with salt-leaching and freeze-drying methodologies were developed for articular cartilage tissue engineering (TE) applications. The HRP-crosslinked SF scaffolds presented high porosity (89.3 ± 0.6%), wide pore distribution and high interconnectivity (95.9 ± 0.8%). Moreover, a large swelling capacity and favorable degradation rate were observed up to 30 days, maintaining the porous-like structure and β-sheet conformational integrity obtained with salt-leaching and freeze-drying processing. The in vitro studies supported human adipose-derived stem cells (hASCs) adhesion, proliferation, and high glycosaminoglycans (GAGs) synthesis under chondrogenic culture conditions. Furthermore, the chondrogenic differentiation of hASCs was assessed by the expression of chondrogenic-related markers (collagen type II, Sox-9 and Aggrecan) and deposition of cartilage-specific extracellular matrix for up to 28 days. The cartilage engineered constructs also presented structural integrity as their mechanical properties were improved after chondrogenic culturing. Subcutaneous implantation of the scaffolds in CD-1 mice demonstrated no necrosis or calcification, and deeply tissue ingrowth. Collectively, the structural properties and biological performance of these porous HRP-crosslinked SF scaffolds make them promising candidates for cartilage regeneration. Statement of Significance In cartilage tissue engineering (TE), several processing technologies have been combined to create scaffolds for efficient tissue repair. In our study, we propose novel silk fibroin (SF) scaffolds derived from enzymatically crosslinked SF hydrogels processed by salt-leaching and freeze-drying technologies, for articular cartilage applications. Though these scaffolds, we were able to combine the elastic properties of hydrogel-based systems, with the stability, resilience and controlled porosity of scaffolds processed via salt-leaching and freeze-drying technologies. SF protein has been extensively explored for TE applications, as a result of its mechanical strength, elasticity, biocompatibility, and biodegradability. Thus, the structural, mechanical and biological performance of the proposed scaffolds potentiates their use as three-dimensional matrices for cartilage regeneration.pt_PT
dc.description.versioninfo:eu-repo/semantics/publishedVersionpt_PT
dc.identifier.citationRibeiro, V. P., Morais, A. S., Maia, F. R., Canadas, R. F., Costa, J. B., Oliveira, A. L., … Reis, R. L. (2018). Combinatory approach for developing silk fibroin scaffolds for cartilage regeneration. Acta Biomaterialia, 72, p. 167-181pt_PT
dc.identifier.doi10.1016/j.actbio.2018.03.047pt_PT
dc.identifier.eid85045181262
dc.identifier.eissn1878-7568
dc.identifier.issn1742-7061
dc.identifier.pmid29626700
dc.identifier.urihttp://hdl.handle.net/10400.14/25689
dc.identifier.wos000432766900013
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.publisherElsevier
dc.relationNORTE-01-0145-FEDER-000023
dc.relationIF/00423/2012
dc.relationIF/01285/2015
dc.relationIF/00411/2013
dc.relationDevelopment of a 3D-tumor-model-on-a-chip
dc.relationBioengineered Silk Fibroin-Based Contructs with Potential for Osteochondral Tissue Regeneration
dc.relationAdvanced tissue engineering strategies for biofabrication of complx tissues
dc.relationAn integrated multidisciplinary tissue engineering approach combining novel high-throughput screening and advanced methodologies to create complex biomaterials-stem cells constructs
dc.relationNOVEL OSTEOCHONDRAL 3D MODEL AS AN IN VITRO TECHNOLOGICAL PLATFORM FOR DRUGS SCREENING: UNDERSTANDING THE MOLECULAR AND CELLULAR CHANGES DURING OSTEOARTHRITIS PROGRESSION
dc.subjectSilk fibroinpt_PT
dc.subjectHorseradish peroxidase-mediated crosslinkingpt_PT
dc.subjectSalt-leachingpt_PT
dc.subjectFreeze-dryingpt_PT
dc.subjectHuman adipose-derived stem cellspt_PT
dc.subjectArticular cartilagept_PT
dc.titleCombinatory approach for developing silk fibroin scaffolds for cartilage regenerationpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.awardTitleDevelopment of a 3D-tumor-model-on-a-chip
oaire.awardTitleBioengineered Silk Fibroin-Based Contructs with Potential for Osteochondral Tissue Regeneration
oaire.awardTitleAdvanced tissue engineering strategies for biofabrication of complx tissues
oaire.awardTitleAn integrated multidisciplinary tissue engineering approach combining novel high-throughput screening and advanced methodologies to create complex biomaterials-stem cells constructs
oaire.awardTitleNOVEL OSTEOCHONDRAL 3D MODEL AS AN IN VITRO TECHNOLOGICAL PLATFORM FOR DRUGS SCREENING: UNDERSTANDING THE MOLECULAR AND CELLULAR CHANGES DURING OSTEOARTHRITIS PROGRESSION
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/COMPETE/PEst-C%2FSAU%2FLA0026%2F2013/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBPD%2F117492%2F2016/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT/OE/PD%2FBD%2F113806%2F2015/PT
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//PD%2FBD%2F113803%2F2015/PT
oaire.awardURIinfo:eu-repo/grantAgreement/EC/FP7/321266/EU
oaire.awardURIinfo:eu-repo/grantAgreement/FCT//SFRH%2FBD%2F92565%2F2013/PT
oaire.citation.endPage181
oaire.citation.startPage167
oaire.citation.titleActa Biomaterialiapt_PT
oaire.citation.volume72
oaire.fundingStreamCOMPETE
oaire.fundingStreamOE
oaire.fundingStreamFP7
person.familyNameRibeiro
person.familyNameda Silva Morais
person.familyNameCanadas
person.familyNameOliveira
person.familyNameOliveira
person.givenNameDr. Viviana
person.givenNameAlain
person.givenNameRaphaël
person.givenNameAna
person.givenNameJoaquim Miguel
person.identifier1415634
person.identifier231614
person.identifier.ciencia-id9414-CDFB-4371
person.identifier.ciencia-idA513-378B-3139
person.identifier.ciencia-idA11C-57BF-DEEE
person.identifier.ciencia-id4713-31C8-A356
person.identifier.ciencia-id0B16-8EF6-862A
person.identifier.orcid0000-0002-3679-0759
person.identifier.orcid0000-0001-5057-0819
person.identifier.orcid0000-0001-9504-4206
person.identifier.orcid0000-0001-8012-4203
person.identifier.orcid0000-0001-7052-8837
person.identifier.ridA-3670-2019
person.identifier.ridM-5574-2013
person.identifier.ridI-3514-2015
person.identifier.ridJ-3404-2013
person.identifier.ridH-8636-2012
person.identifier.scopus-author-id56104780500
person.identifier.scopus-author-id16400974600
person.identifier.scopus-author-id55937245800
person.identifier.scopus-author-id57202066972
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.identifierhttp://doi.org/10.13039/501100008530
project.funder.identifierhttp://doi.org/10.13039/501100001871
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameFundação para a Ciência e a Tecnologia
project.funder.nameEuropean Commission
project.funder.nameFundação para a Ciência e a Tecnologia
rcaap.rightsrestrictedAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublication143dc77d-a812-46f7-aa77-e4af1be2f7fa
relation.isAuthorOfPublication7917f75e-8f78-43d1-a4d8-6584c49a3c4d
relation.isAuthorOfPublication7a389c58-91ea-4b23-a291-c8a1c70028fe
relation.isAuthorOfPublication87934068-f621-402f-b5e6-93e492526ced
relation.isAuthorOfPublication75809bf3-617b-458b-b055-a40506e3026b
relation.isAuthorOfPublication.latestForDiscovery7a389c58-91ea-4b23-a291-c8a1c70028fe
relation.isProjectOfPublication19eb6c0d-aaff-4ecb-a27e-4a1c438443fd
relation.isProjectOfPublicationd17a849d-b36b-4600-acf8-6bc187f68d59
relation.isProjectOfPublication2e5340f7-8efe-4539-9368-23e4d32fffaf
relation.isProjectOfPublicationeddb934a-3599-4fec-929e-630e7d563567
relation.isProjectOfPublication8e4f94da-14e1-44da-81ec-01ab4a0b2d69
relation.isProjectOfPublication6c47a0ae-82ca-44ac-9a25-f0dabdecd687
relation.isProjectOfPublication.latestForDiscovery2e5340f7-8efe-4539-9368-23e4d32fffaf

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
20074952.pdf
Size:
3.47 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.44 KB
Format:
Item-specific license agreed upon to submission
Description: