Repository logo
 
Publication

Neural-network approach to modeling liquid crystals in complex confinement

dc.contributor.authorSantos-Silva, T.
dc.contributor.authorTeixeira, P. I. C.
dc.contributor.authorAnquetil-Deck, C.
dc.contributor.authorCleaver, D. J.
dc.date.accessioned2021-07-23T14:00:15Z
dc.date.available2021-07-23T14:00:15Z
dc.date.issued2014-05-28
dc.description.abstractFinding the structure of a confined liquid crystal is a difficult task since both the density and order parameter profiles are nonuniform. Starting from a microscopic model and density-functional theory, one has to either (i) solve a nonlinear, integral Euler-Lagrange equation, or (ii) perform a direct multidimensional free energy minimization. The traditional implementations of both approaches are computationally expensive and plagued with convergence problems. Here, as an alternative, we introduce an unsupervised variant of the multilayer perceptron (MLP) artificial neural network for minimizing the free energy of a fluid of hard nonspherical particles confined between planar substrates of variable penetrability. We then test our algorithm by comparing its results for the structure (density-orientation profiles) and equilibrium free energy with those obtained by standard iterative solution of the Euler-Lagrange equations and with Monte Carlo simulation results. Very good agreement is found and the MLP method proves competitively fast, flexible, and refinable. Furthermore, it can be readily generalized to the richer experimental patterned-substrate geometries that are now experimentally realizable but very problematic to conventional theoretical treatments.pt_PT
dc.description.versioninfo:eu-repo/semantics/acceptedVersionpt_PT
dc.identifier.doi10.1103/PhysRevE.89.053316
dc.identifier.eid84901989909
dc.identifier.issn1539-3755
dc.identifier.pmid25353923
dc.identifier.urihttp://hdl.handle.net/10400.14/34258
dc.identifier.wos000336761900007
dc.language.isoengpt_PT
dc.peerreviewedyespt_PT
dc.titleNeural-network approach to modeling liquid crystals in complex confinementpt_PT
dc.typejournal article
dspace.entity.typePublication
oaire.citation.issue5pt_PT
oaire.citation.titlePhysical Review E - Statistical, Nonlinear, and Soft Matter Physicspt_PT
oaire.citation.volume89pt_PT
person.familyNameTeixeira
person.givenNamePaulo
person.identifier.ciencia-idB31A-0CBD-8AC4
person.identifier.orcid0000-0003-2315-2261
person.identifier.ridA-2682-2009
person.identifier.scopus-author-id7005895098
rcaap.rightsopenAccesspt_PT
rcaap.typearticlept_PT
relation.isAuthorOfPublicationc9bb104c-6994-4234-9313-cc7eed10c9ab
relation.isAuthorOfPublication.latestForDiscoveryc9bb104c-6994-4234-9313-cc7eed10c9ab

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
tito11.pdf
Size:
453.25 KB
Format:
Adobe Portable Document Format