Logo do repositório
 
Publicação

Artificial intelligence-powered microscopy: transforming the landscape of parasitology

dc.contributor.authorNiz, Mariana De
dc.contributor.authorPereira, Sara Silva
dc.contributor.authorKirchenbuechler, David
dc.contributor.authorLemgruber, Leandro
dc.contributor.authorArvanitis, Constadina
dc.date.accessioned2025-07-16T07:26:24Z
dc.date.available2025-07-16T07:26:24Z
dc.date.issued2026-02-01
dc.description.abstractMicroscopy and image analysis play a vital role in parasitology research; they are critical for identifying parasitic organisms and elucidating their complex life cycles. Despite major advancements in imaging and analysis, several challenges remain. These include the integration of interdisciplinary data; information derived from various model organisms; and data acquired from clinical research. In our view, artificial intelligence—with the latest advances in machine and deep learning—holds enormous potential to address many of these challenges. This review addresses how artificial intelligence, machine learning and deep learning have been used in the field of parasitology—mainly focused on Apicomplexan, Diplomonad, and Kinetoplastid groups. We explore how gaps in our understanding could be filled by AI in future parasitology research and diagnosis in the field. Moreover, it addresses challenges and limitations currently faced in implementing and expanding the use of artificial intelligence across biomedical fields. The necessary increased collaboration between biologists and computational scientists will facilitate understanding, development, and implementation of the latest advances for both scientific discovery and clinical impact. Current and future AI tools hold the potential to revolutionise parasitology and expand One Health principles.eng
dc.identifier.doi10.1111/jmi.13433
dc.identifier.eid105007789656
dc.identifier.issn0022-2720
dc.identifier.pmid40492595
dc.identifier.urihttp://hdl.handle.net/10400.14/53912
dc.identifier.wos001505157800001
dc.language.isoeng
dc.peerreviewedyes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAI-based diagnosis
dc.subjectDeep learning
dc.subjectHost-pathogen interactions
dc.subjectImage analysis
dc.subjectMicroscopy
dc.subjectParasitology
dc.titleArtificial intelligence-powered microscopy: transforming the landscape of parasitologyeng
dc.typereview article
dspace.entity.typePublication
oaire.citation.endPage329
oaire.citation.issue2
oaire.citation.startPage280
oaire.citation.titleJournal of Microscopy
oaire.citation.volume301
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85

Ficheiros

Principais
A mostrar 1 - 1 de 1
A carregar...
Miniatura
Nome:
122216737.pdf
Tamanho:
9.44 MB
Formato:
Adobe Portable Document Format
Licença
A mostrar 1 - 1 de 1
Miniatura indisponível
Nome:
license.txt
Tamanho:
3.44 KB
Formato:
Item-specific license agreed upon to submission
Descrição: