Logo do repositório
 
Miniatura indisponível
Publicação

Distinction of different colony types by a smart-data-driven tool

Utilize este identificador para referenciar este registo.
Nome:Descrição:Tamanho:Formato: 
bioengineering_10_00026.pdf370 KBAdobe PDF Ver/Abrir

Orientador(es)

Resumo(s)

Background: Colony morphology (size, color, edge, elevation, and texture), as observed on culture media, can be used to visually discriminate different microorganisms. Methods: This work introduces a hybrid method that combines standard pre-trained CNN keras models and classical machine-learning models for supporting colonies discrimination, developed in Petri-plates. In order to test and validate the system, images of three bacterial species (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) cultured in Petri plates were used. Results: The system demonstrated the following Accuracy discrimination rates between pairs of study groups: 92% for Pseudomonas aeruginosa vs. Staphylococcus aureus, 91% for Escherichia coli vs. Staphylococcus aureus and 84% Escherichia coli vs. Pseudomonas aeruginosa. Conclusions: These results show that combining deep-learning models with classical machine-learning models can help to discriminate bacteria colonies with good accuracy ratios.

Descrição

Palavras-chave

Petri-plates Colonies Machine-learning models Discrimination

Contexto Educativo

Citação

Projetos de investigação

Unidades organizacionais

Fascículo