Loading...
Research Project
Formulation of new biofertilizers for crop production: contributions to sustainable agricultural practices
Funder
Authors
Publications
Effects of soil sterilization and metal spiking in plant growth promoting rhizobacteria selection for phytotechnology purposes
Publication . Moreira, Helena; Pereira, Sofia I. A.; Marques, Ana P. G. C.; Rangel, António O. S. S.; Castro, Paula M. L.
The contamination of the soil with heavy metals (e.g. Zn) is a serious and crosscutting issue worldwide. Phytotechnologies can minimize the negative impact of this problem using plants and microorganisms in soil rehabilitation. However, the efficiency of proper plant-microbe combinations is usually assessed using spiked and/or sterilized soils, which do not mimic the conditions in situ, and therefore can lead to outcomes that will not be observed under field situations. This study aimed to quantify the effect of soil origin and sterilization on the performance of the two plant growth promoting rhizobacteria (PGPR), Ralstonia eutropha 1C2 and Chryseobacterium humi ECP37, for promoting the growth and metal accumulation of maize plants. A two-experiment approach was applied: the PGPR were inoculated in maize plants growing in (i) sterilized soils spiked with Zn (0, 100, 500 and 1000 mg Zn kg−1); and in (ii) a field-contaminated soil, under sterilized and non-sterilized conditions (599 mg Zn kg−1). Biomass and Zn accumulation in the root and shoot, and Zn bioavailability in soils were determined. Additionally, lipid peroxidation, activity of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD) were assessed in the shoots of plants grown in the field-contaminated soil, as well as the composition of the rhizospheric bacterial community. Zn in the soils negatively affected maize growth, and its effect was strongest in the field-contaminated soil. Overall, PGPR attenuated the negative effects of Zn by improving plant growth, although less pronounced in non-sterilized soils. Sterilization significantly reduced soil Zn availability and affected its' accumulation in plant tissues. Bioinoculants performance was also different in sterilized soil, i.e., bacteria had no effect in the accumulation of Zn but tended to increase the biomass of maize plants. Despite the higher Zn accumulation in shoot tissues, lipid peroxidation was lower whereas antioxidant enzymes were enhanced in non-sterilized soils, suggesting that plant antioxidant system functioned properly. PGPR tended to decrease the diversity of the rhizospheric community. This study highlights that while inoculation with PGPR is effective in increasing Zn bioavailability in soil, accumulation in the plant and maize growth in Zn-contaminated soils, the extent of their effect can be different depending on whether the soil is field-contaminated or metal spiked, and on whether is sterilized prior contaminated. Consequently, the effect of bacterial inoculants assessed exclusively in metal spiked soil and/or sterilized soil may be overestimated, and potentially not transferable to field conditions.
Selection of metal resistant plant growth promoting rhizobacteria for the growth and metal accumulation of energy maize in a mine soil — Effect of the inoculum size
Publication . Moreira, Helena; Pereira, Sofia I. A.; Marques, Ana P. G. C.; Rangel, António O. S. S.; Castro, Paula M. L.
Heavy metals, such as Cd and Zn, are spilled in soils by several anthropogenic sources, including mining activities. Their toxic effects can be minimized using plants especially when paired with plant growth promoting rhizobacteria (PGPR), under phytomanagement strategies. Several factors can contribute to the failure of rhizobacterial inoculation, such as bacteria selection and the inoculum size. In this work five metal resistant PGPR (Ralstonia eutropha 1C2, Chryseobacterium humi ECP37, Pseudomonas fluorescens S3X, Rhizobium radiobacter EC1B and Pseudomonas reactans EDP28) were investigated for their in vitro growth promoting traits and for their ability to induce growth of maize seedlings exposed to Zn and Cd. PGPR inoculum size (10 and 20 mL) and inoculation effectiveness was assessed in energy maize sowed in a mine soil. The results showed that some bacteria only exhibited or enhanced PGP traits when exposed to metals. The bacterial strains ECP37 and EDP28 were the most efficient in improving seedling growth with increasing metal concentrations, followed by S3X. When inoculated in energy maize grown in mine soil, these same strains also outperformed the others by increasing shoot biomass and elongation, metal accumulation, and by decreasing it in roots. The most evident effect of doubling the inoculum size was the increase in Cd accumulation, which was of 17% and 31% in roots and shoots, respectively. Other effects included a slight reduction in shoots' biomass (13%) and a general decrease in P tissue content. The results obtained suggest that PGPR selection prior to inoculation in the target soils should be primarily based in seedling growth promotion under metal exposure. Additionally, the size of the inoculum applied in the soil rhizosphere appears to be important in remediation processes and should be taken into account when planning phytomanagement strategies, especially when the biomass of plants is an important demand.
Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi
Publication . Moreira, Helena; Pereira, Sofia I. A.; Marques, Ana P. G. C.; Rangel, António O. S. S.; Castro, Paula M. L.
The use of heavy metals (HM) contaminated soils to grow energy crops can diminish the negative impact of HM in the environment improving land restoration. The effect of two PGPR (B1—Chryseobacterium humi ECP37T and B2—Pseudomonas reactans EDP28) and an AMF (F—Rhizophagus irregularis) on growth, Cd and Zn accumulation, and nutritional status of energy maize plants grown in a soil collected from an area adjacent to a Portuguese mine was assessed in a greenhouse experiment. Both bacterial strains, especially when co-inoculated with the AMF, acted as plant growth-promoting inoculants, increasing root and shoot biomass as well as shoot elongation. Cadmium was not detected in the maize tissues and a decrease in Zn accumulation was observed for all microbial treatments in aboveground and belowground tissues—with inoculation of maize with AMF and strain B2 leading to maximum reductions in Zn shoot and root accumulation of up to 48 and 43 %, respectively. Although microbial single inoculation generally did not increase N and P levels in maize plants, co-inoculation of the PGPR and the AMF improved substantially P accumulation in roots. The DGGE analysis of the bacterial rhizosphere community showed that the samples inoculated with the AMF clustered apart of those without the AMF and the Shannon-Wiener Index (H′) increased over the course of the experiment when both inoculants were present. This work shows the benefits of combined inoculation of AMF and PGPR for the growth energy maize in metal contaminated soils and their potential for the application in phytomanagement strategies.
Promotion of sunflower growth under saline water irrigation by the inoculation of beneficial microorganisms
Publication . Pereira, Sofia I. A.; Moreira, Helena; Argyras, Konstantinos; Castro, Paula M. L.; Marques, Ana P. G. C.
Soil salinization and fresh water scarcity are amongst the main environmental/agricultural problems,
with serious consequences to plant productivity. Amelioration with microorganisms can enhance plant
performance under salt conditions. The aim of this work was to evaluate the role of beneficial
rhizospheric microorganisms on the growth of sunflower plants irrigated with salinized water with
particular attention to nutrient balance and biochemical responses. Sunflower seedlings were inoculated
with the arbuscular mycorrhizal fungi Rhizophagus irregularis, the rhizobacteria Chryseobacterium humi
ECP37T, or the bacterial endophyte Ochrobacterium haematophilum ZR3-5, and with a mixed inocula of
those microorganisms. Plant growth, nutrient accumulation and lipid peroxidation in plant tissues, and
the activity of soil enzymes, were evaluated. Irrigating sunflower plants with saline water resulted in
decreases in growth and negative effects in salt stress markers, however the application of bioinoculants
enhanced biomass production and accumulation of K+, Mg2+, Ca2+, N and P, reduced Na+ levels in tissues
and increased plant antioxidative response.
This study contributes to devise inoculation strategies for sunflower cultivation in areas prone to
salinization.
Organizational Units
Description
Keywords
Contributors
Funders
Funding agency
Fundação para a Ciência e a Tecnologia
Funding programme
Funding Award Number
SFRH/BPD/105152/2014