Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • The landscape of protein biomarkers proposed for periodontal disease: markers with functional meaning
    Publication . Rosa, Nuno; Correia, Maria José; Arrais, Joel P.; Costa, Nuno; Oliveira, José Luís; Barros, Marlene
    Periodontal disease (PD) is characterized by a deregulated inflammatory response which fails to resolve, activating bone resorption. The identification of the proteomes associated with PD has fuelled biomarker proposals; nevertheless, many questions remain. Biomarker selection should favour molecules representing an event which occurs throughout the disease progress. The analysis of proteome results and the information available for each protein, including its functional role, was accomplished using the OralOme database. The integrated analysis of this information ascertains if the suggested proteins reflect the cell and/or molecular mechanisms underlying the different forms of periodontal disease. The evaluation of the proteins present/absent or with very different concentrations in the proteome of each disease state was used for the identification of the mechanisms shared by different PD variants or specific to such state. The information presented is relevant for the adequate design of biomarker panels for PD. Furthermore, it will open new perspectives and help envisage future studies targeted to unveil the functional role of specific proteins and help clarify the deregulation process in the PD inflammatory response.
  • Computational prediction of the human-microbial oral interactome
    Publication . Coelho, Edgar D.; Arrais, Joel P.; Matos, Sérgio; Pereira, Carlos; Rosa, Nuno; Correia, Maria J.; Barros, Marlene; Oliveira, José L.
    Background: The oral cavity is a complex ecosystem where human chemical compounds coexist with a particular microbiota. However, shifts in the normal composition of this microbiota may result in the onset of oral ailments, such as periodontitis and dental caries. In addition, it is known that the microbial colonization of the oral cavity is mediated by protein-protein interactions (PPIs) between the host and microorganisms. Nevertheless, this kind of PPIs is still largely undisclosed. To elucidate these interactions, we have created a computational prediction method that allows us to obtain a first model of the Human-Microbial oral interactome.Results: We collected high-quality experimental PPIs from five major human databases. The obtained PPIs were used to create our positive dataset and, indirectly, our negative dataset. The positive and negative datasets were merged and used for training and validation of a naïve Bayes classifier. For the final prediction model, we used an ensemble methodology combining five distinct PPI prediction techniques, namely: literature mining, primary protein sequences, orthologous profiles, biological process similarity, and domain interactions. Performance evaluation of our method revealed an area under the ROC-curve (AUC) value greater than 0.926, supporting our primary hypothesis, as no single set of features reached an AUC greater than 0.877. After subjecting our dataset to the prediction model, the classified result was filtered for very high confidence PPIs (probability ≥ 1-10-7), leading to a set of 46,579 PPIs to be further explored.Conclusions: We believe this dataset holds not only important pathways involved in the onset of infectious oral diseases, but also potential drug-targets and biomarkers. The dataset used for training and validation, the predictions obtained and the network final network are available at http://bioinformatics.ua.pt/software/oralint.