Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Susceptibility to the pinewood nematode (PWN) of four pine species involved in potential range expansion across Europe
    Publication . Silva, Marta Nunes da; Solla, Alejandro; Sampedro, Luis; Zas, Rafael; Vasconcelos, Marta W.
    The pine wilt disease (PWD), caused by the pinewood nematode (PWN) Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, is one of the most serious threats to pine forests worldwide. Here we studied several components of susceptibility to PWN infection in a model group of pine species widely distributed in Europe (Pinus pinaster Ait., P. pinea L., P. sylvestris L. and P. radiata D. Don), specifically concerning anatomical and chemical traits putatively related to nematode resistance, whole-plant nematode population after experimental inoculation, and several biochemical and physiological traits indicative of plant performance, damage and defensive responses 60 days post inoculation (dpi) in 3-year-old plants. Pinus pinaster was the most susceptible species to PWN colonization, with a 13-fold increase in nematode population size following inoculation, showing up to 35-fold more nematodes than the other species. Pinus pinea was the most resistant species, with an extremely reduced nematode population 60 dpi. Axial resin canals were significantly wider in P. pinaster than in the other species, which may have facilitated nematode dispersal through the stem and contributed to its high susceptibility; nevertheless, this trait does not seem to fully determinate the susceptible character of a species, as P. sylvestris showed similar nematode migration rates to P. pinaster but narrower axial resin canals. Nematode inoculation significantly affected stem water content and polyphenolic concentration, and leaf chlorophyll and lipid peroxidation in all species. In general, P. pinaster and P. sylvestris showed similar chemical responses after infection, whereas P. radiata, which co-exists with the PWN in its native range, showed some degree of tolerance to the nematode. This work provides evidence that the complex interactions between B. xylophilus and its hosts are species-specific, with P. pinaster showing a strong susceptibility to the pathogen, P. pinea being the most tolerant species, and P. sylvestris and P. radiata having a moderate susceptibility, apparently through distinct coping mechanisms.
  • Intraspecific variation of anatomical and chemical defensive traits in Maritime pine (Pinus pinaster) as factors in susceptibility to the pinewood nematode (Bursaphelenchus xylophilus)
    Publication . Zas, Rafael; Moreira, Xoaquín; Ramos, Miguel; Lima, Marta R. M.; Silva, Marta Nunes da; Solla, Alejandro; Vasconcelos, Marta; Sampedro, Luis
    Key message Migration ability of the PWN through wood branch tissues of adult Maritime pine trees significantly differed among Iberian provenances and this variation was related to differences in anatomical and chemical defensive traits. Abstract The pinewood nematode or pine wilt nematode (PWN; Bursaphelenchus xylophilus) is one of the most dangerous threats to European coniferous forests, especially for the susceptible Maritime pine (Pinus pinaster), a valuable forest resource in South Western Europe. The PWN is vectored by beetles of the genus Monochamus (Coleoptera, Cerambycidae) and once inoculated in healthy branches, it quickly migrates downward to the main trunk through the resin canal system. Therefore, the anatomy of the resin canal system may modulate its migration and proliferation rates. Using material from nine Maritime pine Iberian provenances established in a common garden trial, we investigated whether these provenances differed in their (1) resin canal anatomy, (2) concentration of chemical defences (non-volatile resin and total polyphenolics) in stems and (3) ability of the PWN to migrate through the pine woody tissues in ‘in vitro’ bioassays. Whether variation in anatomical and chemical defensive traits relates to differences in PWN migration across populations was also investigated. Significant intraspecific variation in anatomical and chemical defensive traits and in nematode migration rates through pine tissues was observed. Moreover, the variation in nematode migration rate among pine provenances was related to differences in both anatomical and chemical features. Overall, this study highlights the role of plant genetics in the development of defensive traits against this harmful coniferous pest. The observed intraspecific variation should be taken into account when considering breeding as a strategy to provide areas of high risk of PWN with resistant genetic material.