Loading...
2 results
Search Results
Now showing 1 - 2 of 2
- Application of optimal experimental design concept to improve the estimation of model parameters in microbial thermal inactivation kineticsPublication . Gil, Maria M.; Miller, Fátima A.; Silva, Cristina L.M.; Brandão, Teresa R. S.The estimation of model parameters with high precision is of major importance in mathematical predictions. If a mathematical model is properly chosen and if the primary objective is to improve parameter estimation, underlying statistical theories can be applied. Precision increases with the number of experimental points. However, and in many situations,maximum precision is attained when sampling consists of replicates of specific experimental points. Experimental conditions can be optimized using the Doptimal design concept based on minimization of the generalized variance of the parameter estimates. The objective of this work was to use this methodology for the design of experiments for microbial inactivation processes described by a Gompertz-based model under isothermal and non-isothermal conditions. The application of D-optimal design concept considerably improved parameters precision, when compared to the commonly used heuristic designs.
- Combined effects of temperature, pH and water activity on predictive ability of microbial kinetic Inactivation modelPublication . Gil, Maria M.; Miller, Fátima A.; Brandão, Teresa R. S.; Silva, Cristina L.M.It is well known that temperature is the key factor controlling the microbial survival/inactivation. However, the interactive effects of further stressing environmental conditions may influence microbial behaviour. The objective of this work was to include, in the inactivation model, temperature, pH and aw effects using a black box polynomial model, aiming at accurate prediction. Data of Listeria innocua obtained within the temperature range of 52.5 and 65.0 °C, pH of 4.5, 6.0 and 7.5, and aw of 0.95 and 0.99 were used for model assessment. The relations of such parameters with temperature, aw and pH were assumed to be polynomials.