Repository logo
 
Loading...
Profile Picture
Person

Egas, Conceição

Search Results

Now showing 1 - 2 of 2
  • Culture-dependent and culture-independent diversity surveys target different bacteria: a case study in a freshwater sample
    Publication . Vaz-Moreira, Ivone; Egas, Conceição; Nunes, Olga C.; Manaia, Celia
    Compared with culture-independent approaches, traditionally used culture-dependent methods have a limited capacity to characterizewatermicrobiota. Nevertheless, for almost a century the latter have been optimized to detect and quantify relevant bacteria. A pertinent question is if culture-independent diversity surveys give merely an extended perspective of the bacterial diversity or if, even with a higher coverage, focus on a different set of organisms. We compared the diversity and phylogeny of bacteria in a freshwater sample recovered by currently used culture-dependent and culture-independent methods (DGGE and 454 pyrosequencing). The culture-dependent diversity survey presented lower coverage than the other methods. However, it allowed bacterial identifications to the species level, in contrast with the other procedures that rarely produced identifications below the order. Although the predominant bacterial phyla detected by both approaches were the same (Proteobacteria, Actinobacteria, Bacteroidetes), sequence similarity analysis showed that, in general, different operational taxonomical units were targeted by each method. The observation that culture-dependent and independent approaches target different organisms has implications for the use of the latter for studies in which taxonomic identification has a predictive value. In comparison to DGGE, 454 pyrosequencing method had a higher capacity to explore the bacterial richness and to detect cultured organisms, being also less laborious.
  • Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods
    Publication . Vaz-Moreira, Ivone; Egas, Conceição; Nunes, Olga C.; Manaia, Célia M.
    This study aimed to assess the influence of water treatment and distribution on the bacterial communities with particular emphasis on tap water. Samples from the water treatment plant, the bulk supply distribution system and household taps, supplied by the same drinking water treatment plant, were analyzed using culture-dependent and culture-independent methods. Water treatment imposed alterations in the composition of the bacterial community, although this effect was more evident in the cultivable bacteria rather than among the total community assessed by 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) profiling. Water disinfection, mainly chlorination, promoted a reduction on bacterial diversity and cultivability, with a shift in the pattern of cultivable bacteria from predominantly Gram-negative to predominately Gram-positive and acid-fast. Downstream of the chlorination stages, tap water, in comparison with raw water, presented higher diversity indices and cultivability percentages. From the source to the tap, members of the Alpha-, Beta- and Gammaproteobacteria were the predominant lineages identified using 16S rRNA gene-DGGE analysis. Although with a lower coverage, the DGGE-based lineage identifications were in agreement with those found using 454-pyrosequencing analysis. Despite the effectiveness of water treatment to eliminate or inactivate most of the bacteria, Proteobacteria such as Acinetobacter, Bosea and Sphingomonadaceae may successfully colonize tap water.