Percorrer por autor "Rodrigues, Ilda"
A mostrar 1 - 3 de 3
Resultados por página
Opções de ordenação
- Decellularized small intestine for burn wound treatment: a tissue engineering paradigm shift?Publication . Silva, Inês V.; Rosadas, Marta; Rodrigues, Ilda; Sousa, Clara; Ribeiro, Viviana; Costa, Raquel; Moroni, Lorenzo; Oliveira, Ana L.Introduction: Burn injuries are a significant global health issue, causing approximately 11 million injuries and 180,000 fatalities each year (1). Beyond physical trauma, burn injuries lead to complications such as infections and sepsis. Burn scars can also diminish quality of life by affecting joint mobility and daily activities (2,3). Conventional dressings and autografts have limitations, necessitating novel treatment strategies (4). Decellularized xenografts, particularly from porcine small intestine (SI), offer a promising alternative due to their content of growth factors and structural proteins essential for wound healing (5,6). Preserving these bioactive molecules while ensuring cost-effectiveness requires carefully designed decellularization processes. This study investigates a new decellularization protocol aimed at creating a safe and highly preserved extracellular matrix (ECM) from porcine SI for optimal functional wound dressing. Conclusion: Our results indicate that the protocol implemented effectively preserves essential ECM components and structure while removing cellular contaminants. The material demonstrates anisotropic preserved mechanical properties, adequate swelling capacity, and WTVR similar to skin. The treated samples present biocompatibility, as they do not hinder human fibroblast metabolic activity. This innovative strategy presents a promising approach to produce preserved ECM that could be further process to become a solution for wound healing and tissue regeneration, particularly in challenging cases like burns. Future research will focus on enhancing its antibacterial and anti-inflammatory properties to further improve its efficacy as a dressing for challenging wounds.
- Exploring silk Sericin for diabetic wounds: an in situ-forming hydrogel to protect against oxidative stress and improve tissue healing and regenerationPublication . Baptista-Silva, Sara; Bernardes, Beatriz G.; Borges, Sandra; Rodrigues, Ilda; Fernandes, Rui; Gomes-Guerreiro, Susana; Pinto, Marta Teixeira; Pintado, Manuela; Soares, Raquel; Costa, Raquel; Oliveira, Ana LeiteChronic wounds are one of the most frequent complications that are associated with diabetes mellitus. The overproduction of reactive oxygen species (ROS) is a key factor in the delayed healing of a chronic wound. In the present work, we develop a novel in situ-forming silk sericin-based hydrogel (SSH) that is produced by a simple methodology using horseradish peroxidase (HRP) crosslinking as an advanced dressing for wound healing. The antioxidant and angiogenic effects were assessed in vitro and in vivo after in situ application using an excisional wound-healing model in a genetically-induced diabetic db/db mice and though the chick embryo choriollantoic membrane (CAM) assay, respectively. Wounds in diabetic db/db mice that were treated with SSH closed with reduced granulation tissue, decreased wound edge distance, and wound thickness, when compared to Tegaderm, a dressing that is commonly used in the clinic. The hydrogel also promoted a deposition of collagen fibers with smaller diameter which may have had a boost effect in re-epithelialization. SSH treatment slightly induced two important endogenous antioxidant defenses, superoxide dismutase and catalase. A CAM assay made it possible to observe that SSH led to an increase in the number of newly formed vessels without inducing an inflammatory reaction. The present hydrogel may result in a multi-purpose technology with angiogenic, antioxidant, and anti-inflammatory properties, while advancing efficient and organized tissue regeneration.
- Microvascular, biochemical, and clinical impact of hyperbaric oxygen therapy in recalcitrant diabetic foot ulcersPublication . Martins-Mendes, Daniela; Costa, Raquel; Rodrigues, Ilda; Camacho, Óscar; Coelho, Pedro Barata; Paixão-Dias, Vítor; Luís, Carla; Pereira, Ana Cláudia; Fernandes, Rúben; Lima, Jorge; Soares, RaquelBackground: Diabetic foot ulcers (DFUs) are a serious complication of diabetes and are often difficult to treat. Hyperbaric oxygen therapy (HBOT) has been proposed as an adjunctive treatment to promote healing, but its long-term clinical and biological effects remain insufficiently characterized. This study aimed to evaluate the impact of HBOT on systemic biomarkers, local microvasculature, and clinical outcomes in patients with DFUs. Methods: In this non-randomized prospective study, 20 patients with ischemic DFUs were followed over a 36-month period. Fourteen received HBOT in addition to standard care, while six received standard care alone. Clinical outcomes—including DFU resolution, recurrence, lower extremity amputation (LEA), and mortality—were assessed alongside systemic inflammatory and angiogenic biomarkers and wound characteristics at baseline and at 3, 6, 12, and 36 months. CD31 immunostaining was performed on available tissue samples. Results: The two groups were comparable at baseline (mean age 62 ± 12 years; diabetes duration 18 ± 9 years). At 3 months, the HBOT group showed significant reductions in erythrocyte sedimentation rate and DFU size (p < 0.05), with downward trends observed in C-reactive protein (CRP), vascular endothelial growth factor (VEGF), and placental growth factor (PlGF), and an increase in stromal-derived factor-1 alpha (SDF1-?). No significant changes were observed in the control group. CD31+ microvessel density appeared to increase in HBOT-treated DFU tissue after one month, although the sample size was limited. Patients receiving HBOT had lower rates of LEA and mortality, improved wound healing, and sustained outcomes over three years. DFU recurrence rates were similar between groups. Conclusions: HBOT was associated with improved wound healing and favorable biomarker profiles in patients with treatment-resistant ischemic DFUs. While these findings are encouraging, the small sample size and non-randomized design limit their generalizability, highlighting the need for larger, controlled studies.
