Browsing by Author "Rodrigues, Dina"
Now showing 1 - 10 of 27
Results Per Page
Sort Options
- Analytical strategies for characterization and validation of functional dairy foodsPublication . Rodrigues, Dina; Rocha-Santos, Teresa A.P.; Freitas, Ana C.; Gomes, Ana M.P.; Duarte, Armando C.Functional foods (FFs) are food products to be consumed as part of a balanced diet. They provide physiological benefits or reduce the risk of chronic disease beyond basic nutritional functions. Functional foods containing probiotics and/or prebiotics have gained much interest in recent years due to their health-promoting capacity. The main objective of this review is to discuss the analytical strategies that have been used to validate FFs associated with dairy products containing probiotics and/or prebiotics. In these products, the biochemical events, carried out by enzymes of different sources (milk, bacteria, rennet) leading to the transformation of milk to diverse products (e.g., yoghurt and cheese), are glycolysis, proteolysis and lipolysis. We present the analytical methodologies used to study the microbial probiotic flora and to evaluate the biochemical transformations, the associated functionality in terms of intestinal microbiome and the safety of such FFs. We address the analytical figures of merit. We cover the advantages and the disadvantages of such analytical methodologies and comment on future applications and potential research interest within this field.
- Antibacterial activity of different water based seaweeds extracts against human pathogenic bacteriaPublication . Rodrigues, Dina; Pereira, Leonel; Rocha-Santos, Teresa A. P.; Freitas, Ana C.; Gomes, Ana; Duarte, Armando C.
- Bioactive polysaccharides extracts from sargassum muticumby high hydrostatic pressurePublication . Rodrigues, Dina; Freitas, Ana C.; Queirós, Rui; Rocha-Santos, Teresa A. P.; Saraiva, Jorge A.; Gomes, Ana M. P.; Duarte, Armando C.Sargassum muticum is an important source of bioactive polysaccharides; hence, high hydrostatic pressure (HHP) was used to improve their extraction efficiency. Response surface methodology and a Box-Behnken full factorial design were employed to assess and optimize the effects of extraction conditions on the yield, total sugars, total sulfated sugars and antioxidant activity of S. muticum extracts. The extraction yield ranged between 32 and 40.4% independently of the extraction conditions or seaweed solid/liquid ratio resulting in average increases of 3.6 to 4.8-fold for total sugars and sulfated sugars, as compared to conventional extraction. Extracts displayed improved antioxidant activities, yet maximum values were achieved under different optimum conditions of HHP processing, for example, 5–5.5 min, 300 MPa and 1 g of dry seaweed for yield. In conclusion, the optimal HHP technology conditions described in this paper enables to obtain enriched bioactive polysaccharide S. muticum extracts.
- Characterization of freezing effect upon stability of, probiotic loaded, calcium-alginate microparticlesPublication . Sousa, Sérgio; Gomes, Ana M.; Pintado, Maria M.; Silva, José P.; Costa, Paulo; Amaral, Maria H.; Duarte, Armando C.; Rodrigues, Dina; Rocha-Santos, Teresa A. P.; Freitas, Ana C.Microencapsulation, utilizing different techniques and polymers, has been studied with the objective of maintaining probiotic viability in food matrices, protecting the cells from their detrimental environment, storage conditions andthe passage of gastrointestinal tract (GIT). The main objective of this study was to assess the effect of freezing at−20◦C upon probiotic alginate-calcium microparticles’ integrity and functionality through parameters such as size,morphology and structure of microparticles as well as to assess cell resistance to simulated gastrointestinal tractconditions upon storage. In order to study the effect of freezing upon the stability of the microparticles, calcium-alginate microparticles, with or without probiotic cells (Lactobacillus casei-01, Lactobacillus paracasei L26, Lactobacillusacidophilus KI and Bifidobacterium animalis BB-12), were characterized at production time and after 60 days storage at−20◦C. An increase in particle size, loss of the spherical shape and porous net damages were observed after 60 daysof storage at −20◦C. In accordance, encapsulation in alginate was not able to exert protection to the encapsulatedprobiotic cells stored at −20◦C for 60 days, especially from acid and particularly bile salts. B. animalis BB-12 revealedto be the most resistant probiotic strain, to both the microencapsulation process and to GIT simulated conditions.
- Chemical and structural characterization of Pholiota nameko extracts with biological propertiesPublication . Rodrigues, Dina; Freitas, Ana C.; Sousa, Sérgio; Amorim, Manuela; Vasconcelos, Marta W.; Costa, João P. da; Silva, Artur M. S.; Rocha-Santos, Teresa A. P.; Duarte, Armando C.; Gomes, Ana M. P.Edible mushrooms including Pholiota nameko are excellent sources of extractable bioactive compounds with much to explore. Enzymatic extractions with Cellulase and Viscozyme were responsible for highest extraction yields (67-77%). No strong antioxidant activity was observed although extracts were able to scavenge ABTS(+) and OH(+). Potential prebiotic activity was observed in all extracts, some increasing 1.4-2 Log cycles of Lactobacillus acidophilus La-5 and Bifidobacterium animalis BB12. 30-50% α-glucosidase inhibition was observed in ultrasound, Flavourzyme and Cellulase extracts. Flavourzyme and Cellulase extracts are richer in macro (Mg, K and P) and micro elements (Zn, Mn and Fe) in comparison to mushroom. Monosaccharides content and profile varied slightly among both extracts with predominance of glucose, galactose and mannose with no uronic acids detection; Flavourzyme extract reported higher free amino acids content. Presence of α and β-glycosidic structures such as glucans and glucan-protein complexes are among the polysaccharides found in both extracts.
- Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of PortugalPublication . Rodrigues, Dina; Freitas, Ana C.; Pereira, Leonel; Rocha-Santos, Teresa A. P.; Vasconcelos, Marta W.; Roriz, Mariana; Rodríguez-Alcalá, Luís M.; Gomes, Ana M. P.; Duarte, Armando C.Six representative edible seaweeds from the Central West Portuguese Coast, including the less studied Osmundea pinnatifida, were harvested from Buarcos bay, Portugal and their chemical characterization determined. Protein content, total sugar and fat contents ranged between 14.4% and 23.8%, 32.4% and 49.3% and 0.6–3.6%. Highest total phenolic content was observed in Codium tomentosum followed by Sargassum muticum and O. pinnatifida. Fatty acid (FA) composition covered the branched chain C13ai to C22:5 n3 with variable content in n6 and n3 FA; low n6:n3 ratios were observed in O. pinnatifida, Grateloupia turuturu and C. tomentosum. Some seaweed species may be seen as good sources of Ca, K, Mg and Fe, corroborating their good nutritional value. According to FTIR-ATR spectra, G. turuturu was associated with carrageenan seaweed producers whereas Gracilaria gracilis and O. pinnatifida were mostly agar producers. In the brown algae, S. muticum and Saccorhiza polyschides, alginates and fucoidans were the main polysaccharides found.
- Design and characterization of a cheese spread incorporating osmundea pinnatifida extractPublication . Faustino, Margarida; Machado, Daniela; Rodrigues, Dina; Andrade, José Carlos; Freitas, Ana Cristina; Gomes, Ana MariaMarine algae have been emerging as natural sources of bioactive compounds, such as soluble dietary fibers and peptides, presenting special interest as ingredients for functional foods. This study developed a cheese spread incorporating red seaweed Osmundea pinnatifida extract and subsequently characterized it in terms of nutritional, pH, and microbiological parameters and bioactivities including prebiotic, antidiabetic, antihypertensive, and antioxidant activities. This food was produced through incorporation of O. pinnatifida extract (3%), obtained via enzymatic extraction Viscozyme L in a matrix containing whey cheese (75%) and Greek-type yoghurt (22%). The product was then subjected to thermal processing and subsequently stored for 21 days at 4 °C. During storage, this food showed a high pH stability (variations lower than 0.2 units), the absence of microbial contamination and all tested bioactivities at the sampling timepoints 0 and 21 days. Indeed, it exerted prebiotic effects under Lactobacillus acidophilus LA-5® and Bifidobacterium animalis subsp. lactis BB-12®, increasing their viability to around 4 and 0.5 log CFU/g, respectively. In addition, it displayed antidiabetic (α-glucosidase inhibition: 5–9%), antihypertensive (ACE inhibition: 50–57%), and antioxidant (ABTS: 13–15%; DPPH: 3–5%; hydroxyl radical: 60–76%) activities. In summary, the cheese spread produced may be considered an innovative food with high potential to contribute toward healthier status and well-being of populations.
- Development of a rice-based fermented probiotic beverage with lactobacillus spp. and streptococcus thermophilusPublication . Gomes, Ana Maria; Ramalhosa, Francisco; Sousa, Sérgio; Rodrigues, Dina; Freitas, Ana Cristina
- Development of probiotic tablets using microparticles: viability studies and stability studiesPublication . Sousa e Silva, J. P.; Sousa, Sérgio C.; Costa, Paulo; Cerdeira, Emília; Amaral, Maria H.; Lobo, José Sousa; Gomes, Ana M. P.; Pintado, Maria M.; Rodrigues, Dina; Rocha-Santos, Teresa; Freitas, A. C.Alternative vectors to deliver viable cells of probiotics, to those conferring limited resistance to gastrointestinal conditions, still need to be sought. Therefore the main goal of the study was to develop tablets able to protect entrapped probiotic bacteria from gastric acidity, thus providing an easily manufacturing scale-up dosage form to deliver probiotics to the vicinity of the human colon. Whey protein concentrate microparticles with Lactobacillus paracasei L26 were produced by spray-drying and incorporated in tablets with cellulose acetate phthalate and sodium croscarmellose. The viability of L. paracasei L. 26 throughout tableting as well as its gastric resistance and release from the tablets were evaluated. Storage stability of L. paracasei L26 tablets was also performed by evaluation of viable cells throughout 60 days at 23 degrees C and 33% relative humidity. A decrease of approximately one logarithmic cycle was observed after the acid stage and the release of L. paracasei L26 from the tablets occurred only after 4 h in the conditions tested. Microencapsulated L. paracasei L26 in tablets revealed some susceptibility to the storage conditions tested since the number of viable cells decreased 2 log cycles after 60 days of storage. However, the viability of L. paracasei L26 after 45 days of storage did not reveal significant susceptibility upon exposure to simulated gastrointestinal conditions. The developed probiotic tablets revealed to be potential vectors for delivering viable cells of L. paracasei L26 and probably other probiotics to persons/patients who might benefit from probiotic therapy.
- Encapsulation of probiotic strains in plain or cysteine-supplemented alginate improves viability at storage below freezing temperaturesPublication . Sousa, Sérgio; Gomes, Ana M.; Pintado, Maria M.; Malcata, Francisco X.; Silva, José P.; Sousa, José M.; Costa, Paulo; Amaral, Maria H.; Rodrigues, Dina; Rocha-Santos, Teresa A. P.; Freitas, Ana C.Four probiotic bacteria (Lactobacillus paracasei L26, L. casei-01, L. acidophilus Ki, and Bifidobacterium animalis BB-12 R ) were encapsulated in plain alginate or alginate supplemented with L-cysteine·HCl, and resulting microcapsules were stored at different temperatures, namely 21, 4, −20, or −80◦C for a period of up to6months. The results showed that the encapsulation in calcium alginate microcapsules was only effective in promoting protection at freezing temperatures, independently of the sensitivity of the strain. Storage of calcium alginate microcapsules at −80◦C indicated a protective effect upon viability of all four probiotic strains and the presence of L-cysteine·HCl in the alginate matrix improved protection upon cell viability of B. animalis BB-12 R . An increase in storage temperature of encapsulated bacteria caused an increase in rate of loss in their viability that was strain dependent. This study suggests that microencapsulation of probiotic cells in calcium alginate can be suitable for sustaining the viability of probiotics in food products that require storage below freezing temperatures, even in the absence of cryoprotectors, contributing to an increased shelf life.
- «
- 1 (current)
- 2
- 3
- »