Browsing by Author "Nadeem, Muhammad Tahir"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Enhancement of oxidative stability and antioxidant potential of flaxseed oil with cinnamon extractPublication . Rizwan, Muhammad; Khan, Ammar Ahmad; Rehman, Abdul; Nadeem, Muhammad Tahir; Tanweer, Saira; Khan, Usman Mir; Saeed, Kanza; Bano, Yasmeen; Alsulami, Tawfiq; Saleem, Faraz Sajid; Morya, Sonia; Ghafar, Saba; Rocha, Joao Miguel; Khalid, Muhammad ZubairOxidation in edible oils and fats is one of the main problems faced by the fat and oil industry. Using natural antioxidants is considered the preferred choice to minimize the application of synthetic antioxidants in food products. The present study was conducted to extract cinnamon extract and evaluate its antioxidant potential. The cinnamon extract was incorporated in flaxseed oil samples at different concentrations of 0.5, 0.1, 0.15, 0.2, and 0.25% (v/v) and compared with the control (with no addition of natural/synthetic antioxidant) and another sample with 0.1% (v/v) of synthetic antioxidant (butylated hydroxytoluene [BHT]). The antioxidant activity of the flaxseed oil added with cinnamon extract was carried out by DPPH and FRAP assay. The extraction method, time and temperature treatments, and solvent concentrations significantly affected cinnamon extracts’ proximate composition, DPPH, and FRAP activity. Cinnamon extract showed higher flavonoid and total phenolic contents, which led to higher antioxidant activity. Phenolic contents were observed at 313.61 ± 19.83 mg GAE/100 g acetone extract. The DPPH assay showed a significant observation of 84.58 ± 3.80%, while the FRAP assay was 143.82 ± 11.21 μmol/g. During 28 days of storage, there was a significant decrease in free fatty acids, peroxide, iodine, and thiobarbituric acid values for the treatments with higher concentrations of cinnamon extract as compared to the control. The T1 and T2, exhibited PV of 4.69 and 4.53 milli-equivalents (meq/kg), respectively. The maximum value of peroxide was detected in T0 (4.78 meq/kg) and the lowest in TBHT (3.50 meq/kg), followed by T3 (3.97 meq/kg), T4 (3.94 meq/kg) and T5 (3.89 meq/kg). As compared to T0 and TBHT, cinnamon extract was significant in reducing the peroxide value. T0 showed the highest iodine value (198.51 I2/100 g), while TBHT and T5 showed the lowest iodine values of 173.76 and 175.29 g of I2 / 100 g, respectively. Moreover, T1, T2, T3, and T4 showed iodine values of 194.34, 195.10, 179.78, and 177.42 g of I2/100 g, respectively. The results revealed that the TBA value of oil increases with the increase of the storage period. T0 showed the highest TBA value (6.95 mg MDA/kg) and T5 had the lowest TBA value (5.92 mg MDA/kg). The TBA values of T1, T2, and T3 were 6.87, 6.63, and 6.68 mg MDA/kg, respectively. Overall, the cinnamon extract improved the oxidative stability of flaxseed oil as an alternative to synthetic antioxidants with no harmful effects on human health.
- The biochemical, microbiological, antioxidant and sensory characterization of fermented skimmed milk drinks supplemented with probiotics Lacticaseibacillus casei and Lacticaseibacillus rhamnosusPublication . Shabbir, Iqra; Al-Asmari, Fahad; Saima, Hafiza; Nadeem, Muhammad Tahir; Ambreen, Saadia; Kasankala, Ladislaus Manaku; Khalid, Muhammad Zubair; Rahim, Muhammad Abdul; Özogul, Fatih; Bartkiene, Elena; Rocha, João MiguelA variety of foods fermented with lactic acid bacteria (LAB) serve as dietary staples in many countries. The incorporation of health-promoting probiotics into fermented milk products can have profound effects on human health. Considering the health benefits of Yakult, the current study was undertaken to develop an enriched Yakult-like fermented skimmed milk drink by the addition of two probiotic strains, namely Lacticaseibacillus casei (Lc) and Lacticaseibacillus rhamnosus (Lr). The prepared drinks were compared in terms of various parameters, including their physicochemical properties, proximate chemical composition, mineral estimation, microbial viable count, antioxidant activity, and sensory evaluation. Each strain was employed at five different concentrations, including 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The prepared Yakult samples were stored at 4 °C and analyzed on days 0, 7, 14, 21, and 28 to evaluate biochemical changes. The findings revealed that the concentration of the starter culture had a significant (p ≤ 0.05) impact on the pH value and moisture and protein contents, but had no marked impact on the fat or ash content of the developed product. With the Lc strain, Yakult’s moisture content ranged from 84.25 ± 0.09 to 85.65 ± 0.13%, whereas with the Lr strain, it was from 84.24 ± 0.08 to 88.75 ± 0.13%. Protein levels reached their highest values with T5 (3% concentration). The acidity of all treatments increased significantly due to fermentation and, subsequently, pH showed a downward trend (p ≤ 0.05). The total soluble solids (TSS) content decreased during storage with Lc as compared to Lr, but the presence of carbohydrates had no appreciable impact. The drink with Lc exhibited a more uniform texture and smaller pore size than Yakult with Lr. Except for the iron values, which showed an increasing trend, the contents of other minerals decreased in increasing order of the added probiotic concentration used: 1% (T1), 1.5% (T2), 2% (T3), 2.5% (T4), and 3% (T5). The highest lactobacilli viable count of 8.69 ± 0.43 colony-forming units (CFU)/mL was observed with the T1 Lr-containing drink at the end of the storage period. Regarding the storage stability of the drink, the highest value for DPPH (88.75 ± 0.13%) was found with the T1 Lc drink on day 15, while the highest values for FRAP (4.86 ± 2.80 mmol Fe2+/L), TPC (5.97 ± 0.29 mg GAE/mL), and TFC (3.59 ± 0.17 mg GAE/mL) were found with the T5 Lr drink on day 28 of storage. However, the maximum value for ABTS (3.59 ± 0.17%) was noted with the T5 Lr drink on the first day of storage. The results of this study prove that Lc and Lr can be used in dairy-based fermented products and stored at refrigerated temperatures.