Browsing by Author "Monteiro, Fernando J."
Now showing 1 - 3 of 3
Results Per Page
Sort Options
- Influence of PLLA/PCL/HA scaffold fiber orientation on mechanical properties and osteoblast behaviorPublication . Siqueira, Lilian de; Ribeiro, Nilza; Paredes, Maria B. A.; Grenho, Liliana; Cunha-Reis, Cassilda; Trichês, Eliandra S.; Fernandes, Maria H.; Sousa, Susana R.; Monteiro, Fernando J.Scaffolds based on aligned and non-aligned poly (L-lactic acid) (PLLA)/polycaprolactone (PCL) fibers obtained by electrospinning, associated to electrosprayed hydroxyapatite (HA) for tissue engineering applications were developed and their performance was compared in terms of their morphology and biological and mechanical behaviors. The morphological results assessed by scanning electron microscopy showed a mesh of PLLA/PCL fibers (random and perfectly aligned) associated with aggregates of nanophased HA. Fourier transform infrared spectrometry confirmed the homogeneity in the blends and the presence of nanoHA in the scaffold. As a result of fiber alignment a 15-fold increase in Young’s Modulus and an 8-fold increase in tensile strength were observed when compared to non-aligned fibers. In PLLA/PCL/HA scaffolds, the introduction of nanoHA caused a remarkable improvement of the mechanical strength of this material acting as a reinforcement, enhancing the response of these constructs to tensile stress. In vitro testing was evaluated using osteoblast (MC3T3-E1) cells. The results showed that both fibrous scaffolds were able to support osteoblast cell adhesion and proliferation and that fiber alignment induced increased cellular metabolic activity. In addition, the adhesion and proliferation of Staphylococcus aureus were evaluated and a lower number of colony forming units (CFUs) was obtained in the scaffolds with aligned fibers.
- Magnetic bone tissue engineering: reviewing the effects of magnetic stimulation on bone regeneration and angiogenesisPublication . Ribeiro, Tiago P.; Flores, Miguel; Madureira, Sara; Zanotto, Francesca; Monteiro, Fernando J.; Laranjeira, Marta S.Bone tissue engineering emerged as a solution to treat critical bone defects, aiding in tissue regeneration and implant integration. Mainly, this field is based on the development of scaffolds and coatings that stimulate cells to proliferate and differentiate in order to create a biologically active bone substitute. In terms of materials, several polymeric and ceramic scaffolds have been developed and their properties tailored with the objective to promote bone regeneration. These scaffolds usually provide physical support for cells to adhere, while giving chemical and physical stimuli for cell proliferation and differentiation. Among the different cells that compose the bone tissue, osteoblasts, osteoclasts, stem cells, and endothelial cells are the most relevant in bone remodeling and regeneration, being the most studied in terms of scaffold–cell interactions. Besides the intrinsic properties of bone substitutes, magnetic stimulation has been recently described as an aid in bone regeneration. External magnetic stimulation induced additional physical stimulation in cells, which in combination with different scaffolds, can lead to a faster regeneration. This can be achieved by external magnetic fields alone, or by their combination with magnetic materials such as nanoparticles, biocomposites, and coatings. Thus, this review is designed to summarize the studies on magnetic stimulation for bone regeneration. While providing information regarding the effects of magnetic fields on cells involved in bone tissue, this review discusses the advances made regarding the combination of magnetic fields with magnetic nanoparticles, magnetic scaffolds, and coatings and their subsequent influence on cells to reach optimal bone regeneration. In conclusion, several research works suggest that magnetic fields may play a role in regulating the growth of blood vessels, which are critical for tissue healing and regeneration. While more research is needed to fully understand the relationship between magnetism, bone cells, and angiogenesis, these findings promise to develop new therapies and treatments for various conditions, from bone fractures to osteoporosis.
- New prospects in skin regeneration and repair using nanophased hydroxyapatite embedded in collagen nanofibersPublication . Ribeiro, Nilza; Sousa, Aureliana; Cunha-Reis, Cassilda; Oliveira, Ana Leite; Granja, Pedro L.; Monteiro, Fernando J.; Sousa, SusanaThis study reflects an exploitation of a composite matrix produced by electrospinning of collagen and electrospraying of nanophased hydroxyapatite (nanoHA), for skin regeneration applications. The main goal was to evaluate the effect of nanoHA, as source of localized calcium delivery, on human dermal fibroblasts, keratinocytes, and human mesenchymal stem cells (hMSCs) growth, proliferation, differentiation, and extracellular matrix production. This study revealed that calcium ions provided by nanoHA significantly enhanced cellular growth and proliferation rates and prevented adhesion of pathogenic bacteria strains typically found in human skin flora. Moreover, hMSCs were able to differentiate in both osteogenic and adipogenic lineages. Rat subcutaneous implantation of the membranes also revealed that no adverse reaction occurred. Therefore, the mechanically fit composite membrane presents a great potential to be used either as cell transplantation scaffold for skin wound regeneration or as wound dressing material in plastic surgery, burns treatment or skin diseases.