Browsing by Author "Mello, Victor Hugo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- ATG9A regulates the dissociation of recycling endosomes from microtubules to form liquid influenza A virus inclusionsPublication . Vale-Costa, Sílvia; Etibor, Temitope Akhigbe; Brás, Daniela; Sousa, Ana Laura; Ferreira, Mariana; Martins, Gabriel G.; Mello, Victor Hugo; Amorim, Maria JoãoAU It is:now Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly established that many viruses that threaten public health : establish condensates via phase transitions to complete their lifecycles, and knowledge on such processes may offer new strategies for antiviral therapy. In the case of influenza A virus (IAV), liquid condensates known as viral inclusions, concentrate the 8 distinct viral ribonucleoproteins (vRNPs) that form IAV genome and are viewed as sites dedicated to the assembly of the 8-partite genomic complex. Despite not being delimited by host membranes, IAV liquid inclusions accumulate host membranes inside as a result of vRNP binding to the recycling endocytic marker Rab11a, a driver of the biogenesis of these structures. We lack molecular understanding on how Rab11a-recycling endosomes condensate specifically near the endoplasmic reticulum (ER) exit sites upon IAV infection. We show here that liquid viral inclusions interact with the ER to fuse, divide, and slide. We uncover that, contrary to previous indications, the reported reduction in recycling endocytic activity is a regulated process rather than a competition for cellular resources involving a novel role for the host factor ATG9A. In infection, ATG9A mediates the removal of Rab11a-recycling endosomes carrying vRNPs from microtubules. We observe that the recycling endocytic usage of microtubules is rescued when ATG9A is depleted, which prevents condensation of Rab11a endosomes near the ER. The failure to produce viral inclusions accumulates vRNPs in the cytosol andAU reduces: Pleasecheckandconfirmthattheeditst genome assembly and the release of infectious virions. We propose that the ER supports the dynamics of liquid IAV inclusions, with ATG9A facilitating their formation. This work advances our understanding on how epidemic and pandemic influenza genomes are formed. It also reveals the plasticity of recycling pathway endosomes to undergo condensation in response to infection, disclosing new roles for ATG9A beyond its classical involvement in autophagy.
- Defining basic rules for hardening influenza A virus liquid condensatesPublication . Etibor, Temitope Akhigbe; Vale-Costa, Silvia; Sridharan, Sindhuja; Brás, Daniela; Becher, Isabelle; Mello, Victor Hugo; Ferreira, Filipe; Alenquer, Marta; Savitski, Mikhail M; Amorim, Maria-JoãoIn biological systems, liquid and solid-like biomolecular condensates may contain the same molecules but their behaviour, including movement, elasticity and viscosity, is different on account of distinct physicochemical properties. As such, it is known that phase transitions affect the function of biological condensates and that material properties can be tuned by several factors including temperature, concentration and valency. It is, however, unclear if some factors are more efficient than others at regulating their behaviour. Viral infections are good systems to address this question as they form condensates de novo as part of their replication programmes. Here, we used influenza A virus liquid cytosolic condensates, A.K.A viral inclusions, to provide a proof of concept that liquid condensate hardening via changes in the valency of its components is more efficient than altering their concentration or the temperature of the cell. Liquid IAV inclusions may be hardened by targeting vRNP interactions via the known NP oligomerizing molecule, nucleozin, both in vitro and in vivo without affecting host proteome abundance nor solubility. This study is a starting point for understanding how to pharmacologically modulate the material properties of IAV inclusions and may offer opportunities for alternative antiviral strategies.