Browsing by Author "Luís, Leonel Almeida"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
- Evaluation of central and peripheral vestibular patients with the video-head impulse testPublication . Luís, Leonel Almeida; Caldas, Alexandre Castro; Costa, JoãoDizziness and vertigo are highly prevalent symptoms that accompany a wide variety of conditions including peripheral vestibular dysfunction, central (vestibular) lesions and somatoform disorders. A correct diagnosis is the prerequisite for successful treatment, which should be directed towards the underlying pathophysiology. Neurophysiological methods that test the integrity of the peripheral and central vestibular system circuitry are essential to make an accurate diagnosis in clinical practice. Currently, that assessment is achieved primarily through eye movement analysis in response to semicircular canal stimulation, namely through caloric stimulation and head impulses. The quantification of the vestibulo-ocular reflex (VOR) dynamic parameters and the characterization of quick eye movements (QEM) triggered with head impulses can now be non-invasively and easily assessed with the video headimpulse test (vHIT). This provided a unique opportunity to carry out neurophysiological studies on the oculomotor responses generated by head impulses in humans. Our aim was to determine if the involvement of central vestibular pathways caused differential disturbances in VOR dynamic changes when explored with the vHIT, which could contribute not only to the differential diagnosis of patients but also to the understanding of VOR control mechanisms. We explored normal subjects and patients diagnosed with acute vestibular syndrome with spontaneous nystagmus of peripheral and central origin and hereditary neurodegenerative disorders. Looking for a simple sign of peripheral disease with the vHIT we noticed anti-compensatory eye movements (AQEM) in patients with peripheral aetiologies of spontaneous nystagmus (SN). In the first study we looked for the accuracy of AQEM to differentiate central from peripheral origins of SN. We recorded the eye movements in response to horizontal head impulses in a group of 43 consecutive patients with acute vestibular syndrome (12 with central, 31 with peripheral disorders), 5 patients after acute vestibular neurectomy (positive controls) and 39 healthy subjects (negative controls). AQEM were defined as quick eye movements (peak velocity above 50°/s) in the direction of the head movement. All patients with peripheral disorders and positive controls had AQEM (latency 231±53ms, amplitude 3.4±1.4º, velocity 166±55º/s) when their head was moved to the opposite side of the lesion. Central patients did not have AQEM. AQEM occurrence rate was higher in peripheral patients with contralesional (74±4%, mean±SD) in comparison to ipsilesional (1±4%) impulses (p<0.001). Overall diagnostic accuracy for differentiating central from peripheral patients was 96% (95% CI for AUC ROC curve: 0.90 to 1.0) for VOR gain and 100% (95% CI: 1.0 to 1.0) for AQEM occurrence rate. These results suggest that AQEM are a sign of vestibular imbalance in a peripheral deficit and should be added to VOR gain analysis in acute vestibular syndrome patients. In the second study on acute vestibular syndrome we reported on a patient with benign paroxysmal positional vertigo (BPPV) and spontaneous nystagmus due to otoconia causing a plug in the horizontal semicircular canal. The video head-impulse test revealed an eye velocity saturation with ipsilesional head impulses that normalized after liberatory maneuvers, documenting for the first time a reversible deficiency of the cupularendolymph high-frequency system dynamics. Furthermore cervical and ocular vestibular myogenic potentials were absent during stimulation of the affected side before the liberatory maneuvers, but normalized within 30 to 80 days. These observations challenge the common belief that VEMPs are evoked by otolith stimulation only, as the assumption of a reversible canal dysfunction by a plug offers a more plausible explanation for all effects. Finally, we reported on a patient presenting with a one-year history of progressive unsteadiness, particularly when in darkness. The video-Head Impulse Test (vHIT)1 (Figure 1 B) revealed a significantly reduced vestibuloocular reflex (VOR) gain in both horizontal (0.38±0.07 and 0.29±0.05) and posterior canals (0.49±0.05 and 0.38±0.06) with covert and overt corrective saccades, but normal VOR responses in both anterior canals (0.89±0.08 and 1.04±0.15), for right and left impulses, respectively. No plausible combination of end-organ lesion should be responsible for these observations. A brain MRI disclosed a left inferior cerebellar peduncle lesion suggestive of a glioma. To the best of our knowledge, this is the first report where three-dimensional vHIT, by means of peripheral-unlikely combinations of VOR lesion, has shown to be of topodiagnostic value. In the second set of studies we explored patients diagnosed with hereditary neurodegenerative disorders with and without vestibular system involvement. In the first study we explored 18 genetically confirmed Huntington’s disease patients (44.7±8.1 years; male=9). VOR latency, VOR gain and QEM characteristics were not different from controls (p>0.11 for all comparisons), suggesting that VOR is preserved at physiological frequency domains in these patients, even in more advanced stages of the disease. In the final study we explored 23 patients with a clinical and genetically confirmed diagnosis of spinocerebellar ataxia (SCA) type 3 (n=15), type 2 (n=4) and type 1 (n=4]), and 9 patients with early onset Friedreich’s ataxia (FA). VOR latency was higher in FA (p<0.001) and SCA3 (p=0.02) as compared to controls, discriminating FA from other ataxic patients with an overall diagnostic accuracy of 88%. VORr, VOR40 and VOR60 were significantly lower in FA and SCA3 (p<0.01). VOR80 was only significantly lower than controls in SCA3 (p<0.01), discriminating these from other ataxic patients with an overall diagnostic accuracy of 78%. Covert saccades were only triggered in SCA3 but with low occurrence rate and peak velocity (11.1±28.5% and 77.50±15.30°/s) whereas overt saccades were present in all groups. VORr gain showed a negative correlation with disease severity evaluated with SARA (Spearman r=-0.46, p=0.01). vHIT provides phenotypic information that differentiates the most common autosomal ataxias and can serve as a strategy to orient genetic diagnosis. A correlation between VOR and SARA raises the possibility of using VOR gain as a neurophysiologic biomarker for disease severity. Altogether these results supply relevant data in distinguishing peripheral and central nervous system (CNS) vestibular deficits, particularly acute deficits in emergency situation, as acute CNS vertigo can be life-threatening (stroke) and require immediate medical action. We first demonstrated that not only VOR instantaneous gain analysis has topodiagnostic value but also the analysis of gain dynamic changes, as these can point to individual aetiologies, e.g. a SCC plug. Secondly we demonstrated that quick eye movements also supply topodiagnostic cues, and should have their latency, peak velocity, direction and occurrence rate analysed. At a neurophysiological level, the oculomotor responses generated by head impulses also provide an understanding of both the biomechanical cupular-endolymph dynamics, the VOR dynamic control processes taking place and the modulation of vestibular spontaneous nystagmus with head impulses