Percorrer por autor "Dessev, Tzvetelin T."
A mostrar 1 - 2 de 2
Resultados por página
Opções de ordenação
- Foaming properties of acid-soluble protein-rich ingredient obtained from industrial rapeseed mealPublication . Ivanova, Petya; Kalaydzhiev, Hristo; Dessev, Tzvetelin T.; Silva, Cristina L.M.; Rustad, Turid; Chalova, Vesela I.The use of the rapeseed meal as a source for preparation of protein-rich ingredients for the food industry is an alternative to the current limited application as a feed additive. The aim of this study was to evaluate foaming properties of an acid-soluble protein-rich ingredient (ASP) obtained from industrial rapeseed meal as a co-product of a protein isolate. Foam capacity and stability over a period of 60 min were evaluated by using volumetric and image analyzing methods. The influence of NaCl at two boundary concentrations (0.03 and 0.25 M) was studied over a pH range from 2 to 10. The ASP exhibited high foamability ([90%), not influenced by pH or salt addition. In contrast, foam stability, measured over a 60 min period, was pH and NaCl dependent. By the end of the observation period, the addition of 0.25 M NaCl reduced the foam volume by more than 70% at all pH values. After 30 min at pH values 4, 6 and 8, which are the most common for food products, the foams without NaCl retained 51, 38 and 41% of the initial foam volume, respectively. The results were in agreement with image analysis observations where microstructure ofthe foams with NaCl was more heterogeneous than that of the foams without salt addition. The high foamability and relatively high foam stability at pH from 4 to 8 without NaCl addition shows that ASP could be a potential alternative to plant proteins currently used as foaming agents in the food industry.
- Stability of sunflower and rapeseed oil-in-water emulsions supplemented with ethanol-treated rapeseed meal protein isolatePublication . Kalaydzhiev, Hristo; Gandova, Vanya D.; Ivanova, Petya; Brandão, Teresa R. S.; Dessev, Tzvetelin T.; Silva, Cristina L. M.; Chalova, Vesela I.A protein isolate (ERPI) was prepared from ethanol-treated rapeseed meal and used as a stabilizing agent in sunflower and rapeseed oil-in-water emulsions. The aim of the current study was to explore the influence of protein and oil concentrations on initial stability of sunflower and rapeseed oil-in-water emulsions by evaluating Gibbs free energy (ΔG) and particle size distribution. The 7-day dynamics of emulsion stability was investigated by turbidity measurement as well. A 32 factorial design was applied to assess the significance of oil (5%, 10% and 15% w/w) and ERPI protein (0.25%, 0.5% and 1.0% w/w) addition on stability of the emulsions. The results demonstrated that the increase of oil concentrations from 5 to 15% positively influenced the initial stability of sunflower and rapeseed oil-in-water emulsions. In both oil types, ERPI protein supplementation at all levels resulted in significant differences in the stability of 5% and 10% oil emulsions but did not alter the initial stability of the emulsions prepared with either 15% sunflower or rapeseed oil. With a few exceptions, there was a good agreement between Gibbs free energy data and microstructural profiles of the emulsions. Overall, emulsions with all sunflower oil concentrations and 1.0% ERPI protein exhibited better initial and a 7-day stability dynamics compared to all rapeseed oil-based emulsions. The study demonstrated the potential of ethanol-treated rapeseed meal protein isolate to serve as an emulsifying agent in sunflower and rapeseed oil containing emulsions.
