Browsing by Author "Braem, Annabel"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Effect of inorganic fillers on the light transmission through traditional or flowable resin-matrix composites for restorative dentistryPublication . Fidalgo-Pereira, Rita; Carvalho, Óscar; Catarino, Susana O.; Henriques, Bruno; Torres, Orlanda; Braem, Annabel; Souza, Júlio C. M.Objectives: The aim of this in vitro study was to evaluate the light transmission through five different resin-matrix composites regarding the inorganic filler content. Methods: Resin-matrix composite disc-shaped specimens were prepared on glass molds. Three traditional resin-matrix composites contained inorganic fillers at 74, 80, and 89 wt. % while two flowable composites revealed 60 and 62.5 wt. % inorganic fillers. Light transmission through the resin-matrix composites was assessed using a spectrophotometer with an integrated monochromator before and after light curing for 10, 20, or 40s. Elastic modulus and nanohardness were evaluated through nanoindentation’s tests, while Vicker’s hardness was measured by micro-hardness assessment. Chemical analyses were performed by FTIR and EDS, while microstructural analysis was conducted by optical microscopy and scanning electron microscopy. Data were evaluated using two-way ANOVA and Tukey’s test (p < 0.05). Results: After polymerization, optical transmittance increased for all specimens above 650-nm wavelength irradiation since higher light exposure time leads to increased light transmittance. At 20- or 40-s irradiation, similar light transmittance was recorded for resin composites with 60, 62, 74, or 78–80 wt. % inorganic fillers. The lowest light transmittance was recorded for a resin-matrix composite reinforced with 89 wt. % inorganic fillers. Thus, the size of inorganic fillers ranged from nano- up to micro-scale dimensions and the high content of micro-scale inorganic particles can change the light pathway and decrease the light transmittance through the materials. At 850-nm wavelength, the average ratio between polymerized and non-polymerized specimens increased by 1.6 times for the resin composite with 89 wt. % fillers, while the composites with 60 wt. % fillers revealed an increased ratio by 3.5 times higher than that recorded at 600-nm wavelength. High mean values of elastic modulus, nano-hardness, and micro-hardness were recorded for the resin-matrix composites with the highest inorganic content. Conclusions: A high content of inorganic fillers at 89 wt.% decreased the light transmission through resin-matrix composites. However, certain types of fillers do not interfere on the light transmission, maintaining an optimal polymerization and the physical properties of the resin-matrix composites. Clinical significance: The type and content of inorganic fillers in the chemical composition of resin-matrix composites do affect their polymerization mode. As a consequence, the clinical performance of resin-matrix composites can be compromised, leading to variable physical properties and degradation. Graphical Abstract: [Figure not available: see fulltext.].
- Light transmittance through resin-matrix composite onlays adhered to resin-matrix cements or flowable compositesPublication . Fidalgo-Pereira, Rita; Catarino, Susana O.; Carvalho, Óscar; Veiga, Nélio; Torres, Orlanda; Braem, Annabel; Souza, Júlio C. M.OBJECTIVE: The aim of this study was to evaluate the influence of the thickness of resin-matrix composite blocks manufactured by CAD-CAM on the light transmittance towards different resin-matrix cements or flowable composites. METHODS: Sixty specimens of resin-matrix composite CAD-CAM blocks reinforced with 89 wt% inorganic fillers were cross-sectioned with 2 or 3 mm thicknesses. The specimens were conditioned with adhesive system and divided in groups according to the luting material, namely: two dual-cured resin-matrix cements, two traditional flowable resin-matrix composites, and one thermal-induced flowable resin-matrix composite. Specimens were light-cured at 900 mW/cm 2 for 40s. Light transmittance assays were preformed using a spectrophotometer with an integrated monochromator before and after light-curing. Microstructural analysis was performed by optical and scanning electron microscopy (SEM). Nanoindentation tests were performed to evaluate mechanical properties for indirect evaluation of degree of monomers conversion. RESULTS: Optical and SEM images revealed low thickness values for the cementation interfaces for the traditional flowable resin-matrix composite. The cement thickness increased with the size and content of inorganic fillers. The highest light transmittance was recorded for the onlay blocks cemented with the traditional flowable resin-matrix composites while a group cemented with the dual-cured resin-matrix cement revealed the lowest light transmittance. The elastic modulus and hardness increased for specimens with high content of inorganic fillers as well as it increased in function of the light transmittance. CONCLUSIONS: The light transmittance of flowable resin-matrix composites was higher than that for resin-matrix cement after cementation to resin-matrix composites blocks. The type, size, and content of inorganic fillers of the luting material affected the thickness of the cement layer and light transmittance through the materials. CLINICAL RELEVANCE: On chair-side light curing, the transmission of visible light can be interfered by the chemical composition and viscosity of the luting materials. The increase in size and content of inorganic fillers of resin-matrix composites and luting materials can decrease the light transmittance leading to inefficient polymerization.