Browsing by Author "Barbe, Jean-Christophe"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Heterocyclic Acetals from Glycerol and Acetaldehyde in Port Wines: Evolution with AgingPublication . Ferreira, António César da Silva; Barbe, Jean-Christophe; Bertrand, AlainIn Port wine, isomers of glycerol and acetaldehyde acetals have been found at total contents ranging from 9.4 to 175.3 mg/L. During oxidative aging, the concentrations of the 5-hydroxy-2-methyl-1,3- dioxane and 4-hydroxymethyl-2-methyl-1,3-dioxolane isomers increased with time showing a linear correlation (r > 0.95). The flavor threshold for the mixture of the four isomers was evaluated in wine at 100 mg/L. Thus, it is expected that they contribute to “old Port wine” aroma in wines older than 30 years. Experiments with model solutions and wine clearly demonstrated that SO2 combines with acetaldehyde and blocks the acetalization reaction.
- Instrumental and sensory approaches for the characterization of compounds responsible for wine aromaPublication . Barbe, Jean-Christophe; Pineau, Bénédicte; Ferreira, Antonio Cesar SilvaMore than 800 aromatic compounds have been identified in wine, some of them at the ng/l level. Wine, therefore, constitutes a very complex matrix, from which it is difficult to isolate a specific aroma character. Gas chromatography–olfactometry (GC–O) applied to wine extracts is used to characterize odor-active zones that are often treated in a hierarchical way by Aroma Extract Dilution Analysis (AEDA). The aromatic impact of the volatiles is evaluated, generally by determining perception thresholds. This methodology has provided convincing results concerning wine flavors, but it does have its limitations. Forinstance , data on b-damascenone have demonstrated that these methods could reach their limits for this volatile, in particular, because of the non-quantitative representation of aroma extracts of wines, and because of the difficulty to accurately determine the perception threshold in wines for a compound already present. For b-damascenone, we have shown that its very low detection threshold with GC–O, its wide range, and its dependence on the composition of the medium resulted in overestimating its direct impact on the aroma of wine. Another way to facilitate the characterization of aromatic compounds was, therefore, investigated. High-Performance Liquid Chromatography (HPLC) methods were developed for the analysis of wine extracts. From an aromatic extract, 25 fractions with various flavors were thus obtained, and reverse-phase methodology was used for the selection and characterization of red- and black-fruit aromas in red wines.
