Loading...
5 results
Search Results
Now showing 1 - 5 of 5
- Sardine roe as a source of lipids to produce liposomesPublication . Guedes, Marta; Costa-Pinto, Ana Rita; Gonçalves, Virgínia; Moreira-Silva, Joana; Tiritan, Maria; Reis, Rui L.; Ferreira, Helena; Neves, Nuno M.Sea-derived materials have promising applications in the medical, pharmaceutical, and biotechnological fields. Fish roe, for example, is a highly nutritional product, presenting diverse beneficial effects on human health. Therefore, this work explored extracts of sardine (Sardina pilchardus) roe, due to the well-known health benefits of this fish, to produce novel and promising delivery systems. After morphological, histological, and histochemical characterizations of sardine roe, their lipids were extracted using two different approaches, namely, Bligh and Dyer (BD) and methyl-tert-butyl ether (MTBE) methods. Gas chromatography/mass spectrometry analyses demonstrated that lipid extracts contain several fatty acids, such as ω3 polyunsaturated fatty acids. The lipids, especially phospholipids, were used to produce multilamellar liposomes (MLVs). These delivery systems presented size heterogeneity, a negative surface charge, and the ability to control the release of the encapsulated anti-inflammatory drug, namely, celecoxib. Biological assays indicated that MLVs produced with MTBE lipidic extracts presented a better cytocompatibility than those obtained by the BD method. This can be further improved if the lipid extracts are processed by chemical extraction. Therefore, sardine roe-derived lipids can produce drug-delivery systems with the potential to be applied in the biomedical field.
- Dispersive liquid–liquid microextraction and HPLC to analyse fluoxetine and metoprolol enantiomers in wastewatersPublication . Ribeiro, Ana R.; Gonçalves, Virgínia M. F.; Maia, Alexandra S.; Ribeiro, Cláudia; Castro, Paula M. L.; Tiritan, Maria E.Sample extraction is a major step in environmental analyses due both to the high complexity of matrices and to the low concentration of the target analytes. Sample extraction is usually expensive, laborious, time-consuming and requires a high amount of organic solvents. Actually, there is a lack of miniaturized methodologies for sample extraction and chiral analyses. Here, we developed a dispersive liquid-liquid microextraction (DLLME) to extract the pharmaceuticals fluoxetine and metoprolol, as models of basic chiral compounds, from wastewater samples. Compounds were then analysed by enantioselective high-performance liquid chromatography. We monitored the influence of sample pH, extracting and dispersive solvent and respective volumes, salt addition, extracting and vortexing time. The DLLME method was validated within the range of 1-10 A mu g L-1 for fluoxetine enantiomers and 0.5-10 A mu g L-1 for metoprolol enantiomers. Accuracy ranged from 90.6 to 106 % and recovery rates from 54.5 to 81.5 %. Relative standard deviation values lower than 7.84 and 9.00 % were obtained for intra- and inter-batch precision, respectively.
- Enantiomeric separation of tramadol and Its metabolites: method validation and application to environmental samplesPublication . Silva, Cátia; Ribeiro, Cláudia; Maia, Alexandra S.; Gonçalves, Virgínia; Tiritan, Maria Elizabeth; Afonso, CarlosThe accurate assessment of racemic pharmaceuticals requires enantioselective analytical methods. This study presents the development and validation of an enantioselective liquid chromatography with a fluorescence detection method for the concomitant quantification of the enantiomers of tramadol and their metabolites, N-desmethyltramadol and O-desmethyltramadol, in wastewater samples. Optimized conditions were achieved using a Lux Cellulose-4 column 150 × 4.6 mm, 3 μm isocratic elution, and 0.1% diethylamine in hexane and ethanol (96:4, v/v) at 0.7 mL min-1. The samples were extracted using 150 mg Oasis® mixed-mode cation exchange (MCX) cartridges. The method was validated using a synthetic effluent of a laboratory-scale aerobic granular sludge sequencing batch reactor. The method demonstrated to be selective, accurate, and linear (r2 > 0.99) over the range of 56 ng L-1 to 392 ng L-1. The detection and the quantification limits of each enantiomer were 8 ng L-1 and 28 ng L-1 for tramadol and N-desmethyltramadol, and 20 ng L-1 and 56 ng L-1 for O-desmethyltramadol. The feasibility of the method was demonstrated in a screening study in influent and effluent samples from a wastewater treatment plant. The results demonstrated the occurrence of tramadol enantiomers up to 325.1 ng L-1 and 357.9 ng L-1, in the effluent and influent samples, respectively. Both metabolites were detected in influents and effluents.
- Microbial degradation of pharmaceuticals followed by a simple HPLC-DAD methodPublication . Ribeiro, Ana R.; Goncalves, Virgínia M.F.; Maia, Alexandra S.; Carvalho, Maria F.; Castro, Paula M.L.; Tiritan, Maria E.The biodegradation of five pharmaceutical ingredients (PIs) of different therapeutic classes, namely antibiotics (trimethoprim, sulfametoxazole and ciprofloxacin), anti-inflammatory (diclofenac) and anti-epileptic (carbamazepine), by two distinct microbial consortia, was investigated. For the monitoring of biodegradation assays, a simple HPLC-DAD (High Performance Liquid Chromatography – Diode Array Detector) method was developed and validated. The separation of the target pharmaceuticals was performed using an environmental friendly mobile phase in a gradient mode of 0.1% triethylamine (TEA) in water acidified at pH 2.23 with trifluoroacetic acid (TFAA) and ethanol as organic solvent. The method revealed to be selective, linear and precise in the range of 1.0 to 30.0 μg/mL for all PIs. Biodegradation assays were performed using activated sludge and a bacterial consortium (able to degrade fluoroaromatic compounds) supplemented with the target PIs at a final concentration of 25 μg/mL. The results revealed that activated sludge removed the target compounds more efficiently than the bacterial consortium.
- Influence of PDLA nanoparticles size on drug release and interaction with cellsPublication . Cartaxo, Ana Luísa; Costa-Pinto, Ana R.; Martins, Albino; Faria, Susana; Gonçalves, Virgínia M. F.; Tiritan, Maria Elizabeth; Ferreira, Helena; Neves, Nuno M.Polymeric nanoparticles (NPs) are strong candidates for the development of systemic and targeted drug delivery applications. Their size is a determinant property since it defines the NP–cell interactions, drug loading capacity, and release kinetics. Herein, poly(D,L-lactic acid) (PDLA) NPs were produced by the nanoprecipitationmethod, in which the influence of type and concentration of surfactant as well as PDLA concentration were assessed. The adjustment of these parameters allowed the successful production of NPs with defined medium sizes, ranging from 80 to 460 nm. The surface charge of the different NPs populations was consistently negative. Prednisolone was effectively entrapped and released from NPs with statistically different medium sizes (i.e., 80 or 120 nm). Release profiles indicate that these systems were able to deliver appropriate amounts of drug with potential applicability in the treatment of inflammatory conditions. Both NPs populations were cytocompatible with human endothelial and fibroblastic cells, in the range of concentrations tested (0.187–0.784 mg/mL). However, confocal microscopy revealed that within the range of sizes tested in our experiments, NPs presenting amedium size of 120 nmwere able to be internalized in endothelial cells. In summary, this study demonstrates the optimization of the processing conditions to obtain PDLA NPs with narrow size ranges, and with promising performance for the treatment of inflammatory diseases.