Repository logo
 
Loading...
Profile Picture

Search Results

Now showing 1 - 2 of 2
  • Tensile strength assay comparing the resistance between two different autologous platelet concentrates (leucocyte-platelet rich fibrin versus advanced-platelet rich fibrin): a pilot study
    Publication . Pascoal, Martim de Almeida Nóbrega Correia; Santos, Nuno Bernardo Malta dos; Completo, António Manuel Godinho; Fernandes, Gustavo Vicentis de Oliveira
    Background: Since the leucocyte-platelet rich fibrin (L-PRF) was published in 2001, many studies have been developed, analyzing its properties, and also verifying new possibilities to improve it. Thereby, it emerges the advanced-platelet rich fibrin (A-PRF) with a protocol that optimizes the properties obtained by the L-PRF. Nonetheless, there is a gap in the literature to landmark the evolutive process concerning the mechanical properties in specific the resistance to tensile strength which consequently may influence the time for membrane degradation. Thus, this study had the goal to compare the resistance to the traction of membranes produced with the original L-PRF and A-PRF protocols, being the first to this direct comparison. Findings: The harvest of blood from a healthy single person, with no history of anticoagulant usage. We performed the protocols described in the literature, within a total of 13 membranes produced for each protocol (n = 26). Afterward, the membranes were prepared and submitted to a traction test assessing the maximal and the average traction achieved for each membrane. The data were analyzed statistically using the unpaired t test. Regarding average traction, A-PRF obtained a value of 0.0288 N mm−2 and L-PRF 0.0192 N mm−2 (p < 0.05 using unpaired t test). For maximal traction, A-PRF obtained 0.0752 N mm−2 and L-PRF 0.0425 N mm−2 (p < 0.05 using unpaired t test). Conclusion: With this study, it was possible to conclude that indeed A-PRF has a significative higher maximal traction score and higher average traction compared to L-PRF, indicating that it had a higher resistance when two opposing forces are applied.
  • A new design of a multifunctional abutment to morse taper implant connection: experimental mechanical analysis
    Publication . Gehrke, Sergio Alexandre; Dedavid, Berenice Anina; Fernandes, Gustavo Vicentis de Oliveira
    The objective of this study was to evaluate a new design of multifunctional abutment for Morse taper implant connections, relative to the retentive stability after the application of cyclic loads in cemented and screwed crowns. Multifunctional abutments with two different angulations in the seating portion of the crown were tested, forming 2 groups (n = 30 samples per group): Group Abut11, where Smart abutments with an angle of 11.42° were used; Group Abut5, where Ideale abutments with an angle of 5° were used. Fifteen samples from each group received cemented crowns (CC) and another fifteen screwed crowns (SC). All crown samples were subjected to the mechanical cycling test at 360,000 cycles at a frequency of 4 Hz and 150 N of the load. The samples with CC were subjected to the tensile test to remove the crowns, while in the samples with SC, the detorque value of the fastening crown screws was measured. The mean tensile strength value of CC in the Abut11 group was 131.9 ± 13.5 N and, in the Abut5 group was 230.9 ± 11.3 N; while the detorque mean value in samples with SC 5.8 ± 1.8 N for the Abut11 group and, 7.6 ± 1.1 N for Abut5 group. Significant statistical differences were found between the two groups in both situations tested (p < 0.05). The multifunctional abutments, presenting a lesser angulation of the crown-seating portion, showed higher values of retention of the CC and a lesser screw loosening of torque of the fixing screws in the SC after the application of cyclic loads when compared to the abutments with more angulation in the crown-seating portion.