Vasconcelos, Isabel M.Mendes, Filipa Cristina Soares2012-06-082012-06-0820112011http://hdl.handle.net/10400.14/85331,3-Propanediol can be biologically produced from glycerol by several microorganisms, namely clostridia. However, no natural microorganism is able to synthesize 1,3-propanediol from glucose. Different strategies have been tried to accomplish this conversion and set up a flexible process operating either on glycerol or glucose. In this work the production of 1,3 - propanediol from glucose and sugar cane molasses was investigated in a two-step process using two recombinant microorganisms. The first stage of the process was the conversion of glucose or other sugar into glycerol by a Saccharomyces cerevisiae strain. To increase glycerol production, different tpi1Δ mutant strains of S. cerevisiae, resulting from genetic engineering strategies, focused on the redirection of metabolic fluxes and overexpression of the key enzymes of the glycerol formation pathway, were tested. Best results were obtained with the mutant strain S. cerevisiae HC42 which exhibits a glycerol yield of 0.46 g.g-1 glucose and a productivity of 3.1 mmol glycerol.h-1.g-1 dry mass on 20 g.l-1 of glucose. Genomic analysis of this strain revealed that 384 genes had significantly changed in response to the genetic modifications introduced; also, the genetic strategy followed led to an intracellular glycerol concentration 10-fold higher than in the parent strain. To solve this issue, the overexpression of FPS1 was exploited in S. cerevisiae HC42. A novel mutant strain FM62 was obtained; however no significant differences on glycerol intracellular accumulation and production were reported. The strain HC42 was not able to grow on high glucose concentrations. In order to increase the glycerol production, the strain was adapted to high glucose concentrations (> 200 g.l-1). The adapted strains FH100 and FH200 were able to grow on 100 and 200 g.l-1 glucose leading to final glycerol concentrations of 49.2 g.l-1 and 60.0 g.l-1 respectively. FH100 was also cultivated on sugar cane molasses media; the production of glycerol increased with the initial total sugars concentration and 47.1 g.l-1 of glycerol were produced when the strain was grown on 101.3 g.l-1 total sugars. The second stage of the process was carried out by the engineered strain Clostridium acetobutylicum DG1 (pSPD5) able to convert glycerol to 1,3- propanediol. This two-step strategy led to a flexible process, resulting in a 1,3- propanediol production and yield that depended on the initial sugar concentration. Below 56.2 g.l-1 of sugar concentration, cultivation on molasses or glucose showed no significant differences. However, at higher molasses concentrations glycerol initially produced by yeast could not be totally converted into 1,3- propanediol by C. acetobutylicum and a lower 1,3-propanediol overall yield was observed. Best results were obtained with an initial glucose concentration of 103 g.l-1, leading to a final 1,3-propanediol concentration of 25.5 g.l-1, a productivity of 0.16 g.l-1.h-1 and 1,3-propanediol yields of 0.56 g.g-1 glycerol and 0.24 g.g-1 sugar, which is, to our knowledge, the highest value reported for a two-step process. For an initial sugar concentration (from molasses) of 56.2 g.l-1, 27.4 g.l-1 of glycerol were produced, leading to 14.6 g.l-1 of 1.3-propanediol and similar values of productivity, 0.15 g.l-1.h-1, and overall yield, 0.26 g.g-1 sugar.O composto 1,3-propanodiol pode ser biologicamente produzido a partir de glicerol por vários microrganismos, nomeadamente clostridia. No entanto, nenhum microrganismo indígena é capaz de sintetizar 1,3-propanodiol a partir de glicose. Têm sido desenvolvidas diferentes estratégias tendo em vista esta conversão e a implementação de um processo flexível, operando quer a partir de glicerol quer a partir de glicose. Neste trabalho, foi investigada a produção de 1,3-pronanodiol a partir de glicose ou melaços de cana-de-açúcar, através de um processo em duas etapas, usando dois microrganismos geneticamente modificados. Na primeira etapa do processo a glicose, ou outro açúcar, foi convertido em glicerol por uma estirpe de Saccharomyces cerevisiae. Para aumentar a produção de glicerol, foram desenvolvidas e avaliadas diferentes estirpes mutantes tpi1Δ de S. cerevisiae, resultantes de estratégias de engenharia genética tendo em vista o redireccionamento dos fluxos metabólicos e a sobreexpressão de enzimas chave da via metabólica de produção de glicerol. Os melhores resultados foram obtidos com a estirpe mutante S. cerevisiae HC42, que apresentou um rendimento em glicerol de 0.46 g.g-1 glicose e uma produtividade de 3.1 mmol glicerol.h-1.g-1 peso seco, em 20 g.l-1 de glicose. A análise genómica desta estirpe revelou alterações na expressão de 384 genes em resposta às modificações genéticas introduzidas; para além disso, a estratégia genética seguida resultou numa concentração intracelular de glicerol 10 vezes maior do que na estirpe selvagem. Com o objectivo de resolver esta questão, foi investigada a sobre-expressão de FPS1 em S. cerevisiae HC42, tendo-se obtido uma nova estirpe mutante, FM62; no entanto, não foram observadas diferenças significativas na produção e na acumulação intracelular de glicerol. A estirpe HC42 não era capaz de crescer em concentrações elevadas de glicose. Para aumentar a produção de glicerol, esta estirpe foi adaptada a elevadas concentrações de glicose (> 200 g.l-1). As estirpes adaptadas FH100 e FH200 foram capazes de crescer em 100 e 200 g.l-1 glicose, conduzindo a concentrações finais de glicerol de 49.2 g.l-1 e 60.0 g.l-1 respectivamente. A estirpe FH100 também foi cultivada em meio de melaços de cana-de-açúcar. A produção de glicerol aumentou com a concentração inicial de açúcares totais e foram produzidos 47.1 g.l-1 de glicerol quando a estirpe foi cultivada em 101.3 g.l-1 açúcar total. A segunda etapa do processo foi realizada pela estirpe geneticamente modificada Clostridium acetobutylicum DG1 (pSPD5), capaz de converter glicerol em 1,3-propanediol. Esta estratégia em dois passos conduziu a um processo flexível, resultando numa produção e rendimento de 1,3-propanodiol dependentes da concentração inicial de açúcar no meio. Para concentrações de açúcar inferiores a 56.2 g.l-1 não foram encontradas diferenças entre os processos realizados com glicose ou com melaços. No entanto, para concentrações mais elevadas de melaços, o glicerol inicialmente produzido pela levedura não foi totalmente convertido em 1,3-propanodiol por C. acetobutylicum e observou-se um rendimento global em 1,3-propanodiol mais baixo. Os melhores resultados foram obtidos com uma concentração inicial de glicose de 103 g.l-1, que conduziu a uma concentração final de 1,3-propanodiol de 25.5 g.l-1, uma produtividade de 0.16 g.l-1.h-1 e rendimentos de 1,3-propanediol de 0.56 g.g-1 de glicerol e 0.24 g.g- 1 de açúcar, sendo este último o valor mais elevado obtido num processo em duas etapas. Para um teor inicial de açúcar (de melaços) de 56.2 g.l-1, foram produzidos 27.4 g.l-1 de glicerol, que conduziram a uma concentração de 14.6 g.l-1 de 1,3- propanodiol, a valores similares de produtividade, 0.15 g.l-1.h-1, e a um rendimento global de 0.26 g.g-1 de açúcar.engProduction of glycerol and 1,3-propanediol from renewable ressources : study of new biocatalysts and process strategiesdoctoral thesis101225431