Browsing by Author "Albekairi, Thamer H."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Designing a multiepitope vaccine against the foodborne pathogenic bacteria Listeria monocytogenes using subtractive immunoinformatics approachesPublication . Aziz, Tariq; Naveed, Muhammad; Shabbir, Muhammad Aqib; Jabeen, Khizra; Khan, Ayaz Ali; Hasnain, Ammarah; Yang, Zhennai; Zinedine, Abdellah; Rocha, João Miguel; Albekairi, Thamer H.Background: Listeria monocytogenes, a Gram-positive bacterium, is a prominent foodborne pathogen that causes listeriosis and poses substantial health hazards worldwide. The continuing risk of listeriosis outbreaks underlies the importance of designing an effective prevention strategy and developing a robust immune response by reverse vaccinology approaches. This study aimed to provide a critical approach for developing a potent multiepitope vaccine against this foodborne disease. Methods: A chimeric peptide construct containing 5 B-cell epitopes, 16 major histocompatibility complex I (MHC-I) epitopes, and 18 MHC-II epitopes were used to create a subunit vaccination against L. monocytogenes. The vaccine safety was evaluated by several online methods, and molecular docking was performed using ClusPro to determine the binding affinity. Immune simulation was performed using the C-ImmSimm server to demonstrate the immune response. Results: The results validated the antigenicity, non-allergenicity, and nontoxicity of the chimeric peptide construct, confirming its suitability as a subunit vaccine. Molecular docking showed a good score of 1276.5 and molecular dynamics simulations confirmed the construct’s efficacy, demonstrating its promise as a good candidate for listeriosis prophylaxis. The population coverage was as high as 91.04% with a good immune response, indicating good antigen presentation with dendritic cells and production of memory cells. Conclusions: The findings of this study highlight the potential of the designed chimeric peptide construct as an effective subunit vaccine against Listeria, paving the way for future advances in preventive methods and vaccine design.
- Wound-healing potentiation in mice treated with phenolic extracts of Moringa oleifera leaves planted at different climatic areasPublication . Benkiran, Sara; Zinedine, Abdellah; Aziz, Tariq; Rocha, João Miguel; Ayam, Iman Msegued; Raoui, Sidi Mohammed; Chabir, Rachida; Errachidi, Faouzi; Alharbi, Metab; Albekairi, Thamer H.; Alasmari, Abdullah F.For years, Moringa oleifera has been known for possessing wound-healing properties. This study aimed to investigate the effect of two extracts: aqueous extract (AE) and ethanolic extract (EE) of Moringa oleifera leaves planted at two regions (Mssisi and Lamta) in Morocco for their anti-inflammatory and healing properties, for which mice were used as a biological model. Inflammation was monitored by assessing forepaw volume of mice, measured at 0 min, 1 h, 3 h, and 5 h, after its induction by carrageenan. Hind paw of mice were treated with extracts of M. oleifera, at a dose of 50 mg/kg, obtained from Mssisi region. This resulted in reduction of edema by 99.2% with EE and by 91.8% with AE, compared to controls and the phenolic extract of M. oleifera planted at Lamta region. Regarding healing of burns induced on rat’s dorsal region; results showed that application of Moringa-based ointment for 14 days, at a dose of 50 mg/kg on wounds, resulted in total healing, compared to controls (negative control: more than 22 days, and positive control: 22 days). M. oleifera extracts resulted in nearly complete tissue repair of 98.26% and 95.34% with EE and AE, respectively.