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ABSTRACT 

 
In the Structural Health Monitoring of bridges, the effects of the operational and 

environmental variability on the structural responses have posed several challenges 

for early damage detection. In order to overcome those challenges, in the last decade 

recourse has been made to the statistical pattern recognition paradigm based on 

vibration data from long-term monitoring. The use of purely data-based algorithms 

that do not depend on the physical descriptions of the structures have characterized 

this paradigm. However, one drawback of this procedure is how to set up the baseline 

condition for new and existing bridges. Therefore, this paper proposes an algorithm 

with a Bayesian approach based on a Markov-chain Monte Carlo method to cluster 

structural responses of the bridges into a reduced number of global state conditions, 

by taking into account eventual multimodality and heterogeneity of the data 

distribution. This approach, along with the Mahalanobis squared-distance, permits one 

to form an algorithm able to detect structural damage based on daily response data 

even under abnormal events caused by operational and environmental variability. The 

applicability of this approach is first demonstrated on standard data sets from the Z-24 

Bridge, Switzerland. Afterwards, for generalization purposes, it is applied on datasets 

from a supposed undamaged bridge condition, namely the Tamar Bridge, England. 

The analysis suggests that this algorithm might be useful for bridge applications, 

because it permits one to overcome some of the limitations posed by the pattern 

recognition paradigm, especially when dealing with limited amounts of training data. 
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INTRODUCTION 

 

The process of implementing a damage detection strategy for existing structures is 

referred to as Structural Health Monitoring (SHM). Under that definition, damage is 

normally defined as changes to the material and/or geometric properties of the 

structural systems, including changes to the boundary conditions and system 

connectivity, which adversely affect the system’s current or future performance. The 

authors pose the SHM process in the context of a statistical pattern recognition (SPR) 

paradigm [1]. In this paradigm, the process can be broken down into four steps: (1) 

operational evaluation, (2) data acquisition, (3) feature extraction, and (4) statistical 

model development for feature classification. This paper addresses the fourth step of 

the SPR paradigm by presenting an algorithm for damage detection, with a Bayesian 

approach based on a Markov-chain Monte Carlo method, under varying and unknown 

conditions. Those conditions might be associated with operational and environmental 

variability generally present in the structures. This approach is of the most importance 

when one wants to implement a real-time damage detection strategy on data from 

real-world bridges.  

The Bayesian approach carries out a model-based clustering, using multivariate 

finite mixture models, which aims to capture the main clusters/components of features 

that correspond to the normal and stable state conditions of a bridge, even when it is 

affected by extreme operational and environmental conditions. After that, instead of 

using a static Bayesian inference for outlier detection, a simpler dynamical approach 

is proposed, which permits one to track the outlier formation in time in relation to the 

chosen main groups of states. The damage detection is carried out on the basis of an 

outlier detection strategy using a machine learning method based on the Mahalanobis 

Squared-Distance (MSD). 

For generality purposes, the damage detection algorithm is tested in the context of 

structural changes caused by varying operational and environmental conditions, which 

can mask the effects caused by damage. Actually, the authors believe that the 

separation of the changes in the structural responses caused by operational and 

environmental variability, from the changes caused by damage, is one of the biggest 

challenges to transit SHM technology from research to practice [2]. The challenges 

posed by the effects of the operational and environmental variability, on the damage 

detection process, have been extensively pointed out by several studies. For instance, 

Farrar et al. [3] performed vibration tests on the I-40 Bridge over the Rio Grande in 

New Mexico, USA, in order to investigate if modal parameters could be used to 

identify damage to the structure. Cuts in four increasing level stages were made in a 

mid-span plate girder to simulate the formation of fatigue cracks. For the fundamental 

natural frequency, it was observed that the magnitude increased for the first two levels 

of damage and decreased for the other two levels. Later investigation concluded that 

the ambient temperature of the bridge played a major role in the variation of the 

bridge’s dynamic characteristics. Kim et al. [4] reported that the measured natural 

frequencies of a 46 m long simply-supported plate girder decreased by 5.4% as a 

result of heavy traffic.  

The applicability of the proposed algorithm is demonstrated on standard data sets 

from both the Z-24 Bridge [7], in Switzerland, and the Tamar Suspension Bridge, 

England. The data sets from the Z-24 Bridge are unique in the sense that they combine 

one-year monitoring with realistic damage scenarios and effects of the operational and 
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environmental variability. Actually, in 2001, Peeters et al. [8] performed a study on 

the Z-24 Bridge data addressing the influence of the temperature effect on the modal 

parameters. The authors speculated that differences in the natural frequencies ranging 

from 14-18% must be explained by environmental changes. On the other hand, the 

Tamar Bridge is unique in the sense that it combines data sets from a large period of 

observation when the structure is thought to be undamaged. Actually, analyses on data 

from the Tamar Bridge have shown that the total mass of traffic is the most influential 

parameter on the bridge’s dynamic performance, followed by the temperature. The 

authors claimed that temperature and traffic impose fluctuations, in the first lateral 

frequency, by around 10% [5,6]. 

Note that even though several environmental factors, such as temperature and 

humidity, were measured during the period of observation, the approach presented 

herein does not take them into account for the damage detection process. Therefore, 

the damage-sensitive features are only based on vibration response data from the 

bridge. 

 

 

DAMAGE DETECTION ALGORITHM WITH A BAYESIAN APPROACH 

BASED ON MARKOV-CHAIN MONTE CARLO 

 

Suppose that a data set  is available, which consists of  i.i.d. 

observations of a random variable/vector, arising from a mixture of  distributions, 

, (1) 

with  being the density of a distribution from a known parametric 

distribution family . 

In this setting, one is concerned with the estimation of the component parameters 

 and the weight distribution  of the underlying mixture 

distributions, based on the data . Herein, the purpose is to employ a Bayesian 

approach based on a MCMC algorithm as described in Fruhwirth-Schnatter [9], as an 

alternative to the classical maximum likelihood (ML) estimation based on the 

expectation-maximization (EM) algorithm. The main difference of the Bayesian 

approach, from the ML approach, is the inclusion of a proper prior distribution on the 

component parameter, which has a smoothing effect on the mixture likelihood 

function and reduces the risk of obtaining spurious modes in cases where the EM 

algorithm leads to degenerate solutions.  

The Bayesian approach is composed of a two-step iterative procedure based on the 

complete-data likelihood function  given by 

, (2) 

where  are considered to be allocations of each observation to its 

corresponding component in the mixture and  is a 0/1 coding of this allocation, 

, if and only if  (i.e. if the observable  comes from component k of 

the mixture). The allocations  are regarded as data without a value stored 

in the current observation, i.e. missing data or (unobserved) latent variables. 
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The Bayesian approach to a mixture model, estimates the augmented parameter 

set  by sampling from the complete-data posterior distribution . In 

this setting, the posterior distribution is given by Bayes’ theorem 

. (3) 

 

 

DESCRIPTION OF THE Z-24 AND THE TAMAR SUSPENSION BRIDGES 

 

The Z-24 Bridge was a standard post-tensioned concrete box girder bridge 

composed of a main span of 30m and two side-spans of 14m (Figure 1). The bridge, 

before complete demolition, was extensively instrumented and tested with the aim of 

providing a “feasibility tool” for vibration-based SHM in civil engineering. A long-

term monitoring test was carried out, from 11 November 1997 until 10 September 

1998, to quantify the operational and environmental variability present on the bridge 

and to detect the existence of damage artificially introduced, approximately, in the last 

month of the observation period (4th of August to 10th of September 1998). Every 

hour, environmental quantities, such as temperature at several locations, were 

measured from an array of sensors. In particular, every hour, eight accelerometers 

captured the vibrations of the bridge for 11 minutes. Progressive damage tests 

(settlement, concrete spalling, landslide at abutment, concrete hinge failure, anchor 

head failure, and rupture of tendons) were carried out in a one-month time period 

shortly before the demolition of the bridge, in order to prove that realistic damage has 

a measurable influence on the bridge dynamics [7]. Note that the continuous 

monitoring system was still running during the progressive damage tests, which 

permits one to validate the SHM system to detect accumulative damage on long-term 

monitoring. 

The Tamar Suspension Bridge (Figure 1) carries the A38 trunk road from Saltash 

in Cornwall to the city of Plymouth in Devon within the United Kingdom. Since 1961 

the bridge structure was a steel truss supported vertically by a pair of suspension 

cables. In order to meet a European Union Directive that bridges should be capable of 

carrying lorries of up to 40 tonnes, the bridge underwent a strengthening and widening 

upgrade scheme, which was completed in 2001. The upgrade consisted of adding 

cantilevered lanes either side of the truss to provide a total of four lanes for traffic and 

a footpath for pedestrians. The heavy composite deck was replaced by an orthotropic 

steel deck and eight pairs of stay cables connected to the towers were added to support 

the increased weight of the deck. 

In order to track the effects of the upgrade, a monitoring system was installed by 

FUGRO to determine the performance of the structure, as well as to record 

environmental effects such as wind speeds and ambient and structural temperatures. 

Five years later a dynamic response monitoring system with real time modal 

parameter identification was installed. This system includes three accelerometers 

located at the centre of the main span that record vertical and sway vibrations of the 

deck structure. The data from both the FUGRO and dynamic monitoring systems are 

summarized into 30-minute intervals, so that data collected over several years can be 

compared to determine possible environmental and operational influences on the 

bridge’s performance. 
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Figure 1. The Z-24 Bridge (left) and Tamar Suspension Bridge (right). 

 

 

DATA ANALYSIS: APPLICABILITY OF THE ALGORITHM 

 

For the Z-24 Bridge, the applicability of the approach was explored using daily 

natural frequencies estimated from acceleration time series measured at 5am, due to 

the low levels of traffic and to minimize the temperature differential. Figure 2 plots 

those frequencies (235 observations). The last 38 observations correspond to the 

damage progressive testing period, which is highlighted, especially in the second 

frequency, by a clear drop in the frequency’s magnitude. Note that the damage 

scenarios are carried out in a sequential manner, which cause a cumulative 

degradation of the bridge. Therefore, in this study, it is assumed that the bridge 

operates within its undamaged condition (baseline condition) from 11th of November 

1997 to 3rd of August 1998 (observations 1-197) under operational and environmental 

variability. The observed jumps in the natural frequencies are related to the asphalt 

layer, in cold periods, that contributes significantly to the stiffness of the bridge [8]. 

On the other hand, the bridge is assumed in its damaged condition from 4th of August 

to 10th of September 1998 (observations 198-235).  

Figure 3 plots, the MSD of each observation (1-197) to the empirical mean against 

the corresponding percentile of the Chi-Square distribution with two degrees of 

freedom, . As the points do not lie on a straight line, it is assumed that the entire 

data set does not follow a single bivariate normal distribution. Therefore, this fact 

suggests the use of other models that eventually will allow one to use the Gaussian 

assumption. One method to achieve that is to model the baseline condition of the data 

using only the main normal components. Figure 4 plots a finite mixture of bivariate 

normal distributions to the baseline data. The number of components, weights, and 

mean vectors are summarized in Table 1. The main component accounts for 81% of 

the baseline data, which corresponds to the undamaged condition without major 

effects caused by operational and environmental variability. The second component 

accounts for 19% of the baseline data, which takes into account the extreme effects of 

the operational and environmental conditions, including the ones caused by freezing 

temperature in the asphalt layer. 

After the above unsupervised learning stage to infer the heterogeneity of the data 

under varying operational and environmental conditions, the next step is to lay out a 

procedure to incorporate prior knowledge of the baseline data into the damage 

detection process. Two independent MSD models, based on the two main components 

from the baseline condition, are set to match the two components of the model. Figure 

5 plots daily Damage Indexes (DI), where each DI corresponds to the minimum MSD 
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coefficient of those two MSD models, along with a threshold defined for the 95% 

confidence region of that component. In this case, it is possible to verify the 

performance of the classifier because of the existence of known damaged structural 

responses. Thus, the Error Type I (false-positive indication of damage) and the Error 

Type II (false-negative indication of damage) is a common method of reporting the 

performance of a binary classification. This technique recognizes that a false-positive 

classification may have different consequences than a false-negative one. In this case, 

one can highlight four Error Type I and two Error Type II, which seems to be a 

reasonable classification performance based on the level of significance used (α=5%). 

 

  
Figure 2. First two natural frequencies estimated at 

5am. 
Figure 3. Chi-square plot to verify the 

multimodality of the observations. 
  

 
 

Figure 4. Fitted bivariate normal mixture 

distribution with K=2 on the undamaged data set. 

Figure 5. Daily DIs along with threshold defined 

for the 95% confidence region of the two 

components. 
 

 
Table 1. Components (k=2) of the observations from the  

baseline condition given by the marginal likelihood. 

 

Components 
Description 

#1 #2 

Weight (%) 81 19 

f1 3.97 4.22 Mean 

(Hz) f2 5.19 5.39 
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In the case of Tamar Suspension Bridge, and following the same procedure used 

for the Z-24 Bridge, Figure 6 shows a plot of the first five natural frequencies 

estimated at 5am from 1
st
 of July 2007 to 24

th
 of February 2009 (602 observations). 

As the real structural condition of the bridge is not known a priori, 50% of the 

observations were used to find the number of normal components (observations 1-

301, from the beginning until 29
th
 of April 2008). In this case, and as suggested in 

Figure 7, the MSD of each observation to the empirical mean against the 

corresponding percentile of the Chi-Square distribution, , suggests that the data 

follow a multivariate normal distribution reasonably well. The number of components 

K=4 (given by the marginal likelihood), weights, and mean vectors are summarized in 

Table 2. The results suggest that the means of each component are relatively close, 

which confirm the indications of Figure 7 regarding the existence of a multivariate 

normal distribution. Those indications are further confirmed in Figure 8, which plots 

50% of the bi-dimensional data given by the first and fourth natural frequencies along 

with the finite mixture model of multivariate normal distributions. In terms of a 

structural point of view, the multi-normal distribution indicates that the structure 

changes very little in time and probably shifts between four unknown operational and 

environmental conditions. Nevertheless, Figure 9 plots daily DIs, where each DI 

corresponds to the minimum MSD coefficient of those four MSD models, along with 

a threshold defined for the 95% confidence region.  

 

 

  
Figure 6. First five natural frequencies estimated 

at 5am from 01/07/2007 to 24/02/2009. 

Figure 7. Chi-square plot to verify the 

multimodality of the observations. 

 

 
Table 2. Components (k=4) of the observations from 50% of the data  

given by the marginal likelihood. 

 

Component 
Description 

#1 #2 #3 #4 

Weight (%) 29 33 24 15 

f1 0.39 0.39 0.39 0.39 

f2 0.47 0.48 0.47 0.47 

f3 0.59 0.60 0.59 0.60 

f4 0.69 0.69 0.69 0.69 

Mean 

(Hz) 

f5 0.72 0.73 0.73 0.72 

 

7



  
Figure 8. Fitted normal mixture distribution with 

K=4 on 50% of the data set. 

Figure 9. Daily DIs along with threshold for the 

95% confidence region of the four components. 

 

  

CONCLUSIONS 

 

This parametric approach has several advantages over other non-parametric 

approaches because: (i) it permits the generalization of the underlying distribution of 

the observations, which might be useful in those cases where there is not enough data 

to fully characterize their density distribution; and (ii) the assumption of parametric 

distributions permits one to define thresholds for certain level of significance, which 

might be useful for real-world applications. 
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