Exploiting the lab on valve concept to study the 3,4-HPO chelator as non-toxic reagent for the determination of iron in coastal and inland bathing waters

Raquel B. R. Mesquita1,2*, Ruth Suarez3, Maria Rangel4, Adriano A. Bordalo2, Víctor Cerdà3, António O. S. S. Rangel1

1CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, R. Dr. António Bernardino de Almeida 4200 - 072 Porto, Portugal
2Laboratory of Hydrobiology, Institute of Biomedical Sciences Abel Salazar (ICBAS) and Institute of Marine Research (CIIMAR), Universidade do Porto, Porto, Portugal
3Department of Chemistry, Faculty of Science, University of Balearic Islands, Palma de Mallorca, Spain
4REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4099-003 Porto, Portugal
* e-mail: rmesquita@porto.ucp.pt

The speciation of iron(II) and iron(III) in dynamic water systems usually implies the determination with highly toxic reagents. In this context, low toxicity iron chelators, derived from 3-hydroxy-4-pyridinone (3,4-HPO) ligands used as chromophores, can be seen as a greener alternative. The use of 3,4-HPO chelators as iron reagents requires a detailed study of the reaction conditions and a comprehensive interference study. To be considered an effective alternative, similar (or better) sensitivity should be obtained when compared to commonly used reagents together with non-significant interferences.

Bathing waters, coastal and inland, present a challenging matrix due to the expected variety of parameters. In fact, these waters are often highly stressed due to recreational activities, so the efficient monitoring of parameters such as iron(II) and iron(III) represents a valuable contribution to the overall environmental assessment. These samples have a set of different characteristics and parameters namely salinity. Furthermore, the expected low levels of iron may result in the potential need for a pre-concentration step.

In this work, the versatility of micro sequential injection analysis in a lab on valve (LOV) format was used to study the determination of iron with the 3,4-HPO chelating agent. The reaction conditions were optimized and the interferences evaluated. Then, the aimed water samples, bathing waters, were analyzed. Additionally, with the aim of pre-concentrating iron, NTA resin was placed at the flow cell to retain the iron prior to the reaction with the chelating agent.

Acknowledgments
R. B. R. Mesquita thanks to Fundação para a Ciência e a Tecnologia (FCT, Portugal) and Fundo Social Europeu (FSE) the grant SFRH/BPD/41859/2007. R. Suarez thanks to Ministerio de Educación Cultura e Deporte por Orden EDU/2719/2011 for the supporting grant. This work was supported by European Union FEDER funds through COMPETE and by National Funds through FCT, project PTDC/AAC-AMB/104882/2008 and also supported by National Funds from FCT through project PEst-C/EEQB/LA0016/2011.