Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.14/6623
Título: Optimal experimental design for estimating the kinetic parameters of the Bigelow model
Autor: Cunha, Luís M.
Oliveira, Fernanda A. R.
Brandão, Teresa R.S.
Oliveira, Jorge C.
Data: 1997
Editora: Elsevier
Citação: CUNHA, Luís M... [et al.] - Optimal experimental design for estimating the kinetic parameters of the Bigelow model. Journal of Food Engineering. ISSN 0260-8774. 33:1-2 (1997) 111-128
Resumo: The optimum experimental design for systems following the Bigelow model was studied by determining the sampling conditions that lead to a minimum confidence region for a number of observations equal to the number of parameters. For isothermal conditions, it was found that this corresponds to the sampling times when the fractional concentration of the decaying factor (ηi) is equal to e−1 and that the experiments should be performed in the limit range of temperatures chosen. These results are identical to those described in the literature for a first-order Arrhenius model. For non-isothermal experiments with linearly increasing temperature, the optimal experimental design is obtained with a maximum heating rate, a minimum initial temperature and sampling times when the product of the fractional concentrations is e−2 (with η1 congruent with 0.70 and η2 congruent with 0.19). The influence of the heating rate on the precision of the estimates is more significant for high z values and the influence of the initial temperature is more significant for low values of the heating rate.
Peer review: yes
URI: http://hdl.handle.net/10400.14/6623
Versão do Editor: doi:10.1016/S0260-8774(97)00047-2
Aparece nas colecções:ESB - Artigos em revistas internacionais com Arbitragem / Papers in international journals with Peer-review

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Optimal experimental design....pdf1,16 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.