Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.14/5437
Título: Microbiology for chemical engineers - from macro to micro scale
Autor: Emanuelsson, E. A. C.
Emanuelsson, M. A. E.
Patterson, D. A.
Castro, P. M. L.
Livingston, A. G.
Palavras-chave: Bacteria
Stability
Non-sterile
Long-term
Bioreactor
Data: Fev-2007
Editora: Wiley-Blackwell
Citação: "Asia-Pacific journal of chemical engineering". ISSN 1932-2143: 2: 5 (2007) 448-454
Resumo: Recent developments in microbial techniques (such as PCR, GE, FISH) have allowed researchers to detect, identify and quantify microorganisms without the limitation of culture-dependent methods. This has given both engineers and scientists a more fundamental understanding about systems containing microorganisms. These techniques can be used to monitor bacteria in wastewater treatment systems, soil and sea, industrial fermentation, food technology, and improve floccability, etc. However, despite these techniques being readily available and relatively cheap, they are not widely used by engineers. Hence, the aim of this paper is to introduce these techniques, and their applications, to chemical engineers. Two different studies related to industrial wastewater treatment, but applicable to general microorganism systems, will be presented: (1) microbial stability of pure cultures, and (2) bioreactor population shifts during alternating operational conditions. In (1), two bioreactors, inoculated with two different pure cultures, (A) Xanthobacter aut GJ10 and (B) Bulkholderia sp JS150, degrading 1,2-dichloroethane (DCE) and monochlorobenzene (MCB), respectively, were followed over time (Emanuelsson et al ., 2005). Specific and universal 16S rRNA oligonucleotide probes were used to identify the bacteria. It was found that bioreactor (A) remained pure for 290 days, whereas bioreactor (B) became contaminated within one week. The difference in behaviour is attributed to the pathway required to degrade DCE. In (2), the stability of a bacterial strain, which was isolated on the basis of its capability to degrade 2-fluorobenzoate from contaminated soil, in three different, up-flow fixed bed reactors operated under shock loads and starvation periods, was followed by denaturing gradient gel electrophoresis (DGGE) (Emanuelsson et al ., 2006). All bioreactors were rapidly colonised by different bacteria; however, the communities remained fairly stable over time, and shifts in bacterial populations were mainly found during the starvation periods.
Peer review: yes
URI: http://hdl.handle.net/10400.14/5437
Versão do Editor: http://onlinelibrary.wiley.com/doi/10.1002/apj.80/pdf
Aparece nas colecções:ESB - Artigos em revistas internacionais com Arbitragem / Papers in international journals with Peer-review

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Microbiology for chemical engineers from macro to micro scale.pdf299,5 kBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.