Utilize este identificador para referenciar este registo: http://hdl.handle.net/10400.14/14075
Título: Optimized, automated shimming procedure for improved experimental cardiac magnetic resonance imaging and spectroscopy at ultra-high magnetic fields
Autor: Amaral, Cristiano José da Silva Barros
Orientador: Schneider, Jürgen
Data de Defesa: 6-Dez-2012
Resumo: Background: As técnicas de ressonância magnética cardíaca por imagem (MRI) e espetroscopia (MRS) são ferramentas usadas para caraterizar, de forma não invasiva, modelos de rato com doenças cardíacas humanas. As experiências são tipicamente conduzidas em sistemas de Ressonância Magnética (MR) equipados com magnetos de elevada intensidade (≥ 7 Tesla). Um requisito fundamental da MR é a homogeneidade do campo magnético estático, B0 (Grutter, 1993), e as flutuações (inomogeneidades) do campo magnético principal na região de imagem devem ser menores a três partes por milhão (3 ppm). Inserindo uma amostra aumenta-se a inomogeneidade do campo (devido a diferentes graus de magnetização ao longo da amostra como resposta a B0 ("suscetibilidade magnética")), a qual necessita de ser compensada (Crijns et al, 2011; Koch et al, 2006). Homogeneizar (shimming) o campo magnético estático é uma tarefa crucial em qualquer experiência de MR para maximizar a resolução e a razão entre sinal e ruído. Isto é particularmente importante em campos magnéticos de elevada intensidade devido à dependência linear da suscetibilidade magnética com B0. O ajuste manual das bobinas de shim é laborioso e subjetivo. Para além disso, este processo é particularmente desafiante onde vários tecidos (por exemplo, osso, fluxo de sangue, entre outros) estão numa vizinhança próxima dentro do tórax, tendo cada um diferentes suscetibilidades magnéticas e movimentos relativos. Métodos automáticos de shimming, como o FASTMAP ou FASTERMAP (Shen et al, 1997), estão experimental e clinicamente bem estabelecidos no tecido cerebral mas falham no coração devido à fase de sinal mal definida de MR, particularmente no interior dos ventrículos. Com base numa técnica previamente implementada para o cérebro humano, foi investigada a implementação de uma nova abordagem para corações de ratos, in vivo, capaz de homogeneizar B0 na região de interesse, com uma forma aleatória. Objetivo: O objetivo deste projeto é investigar os parâmetros ótimos de digitalização e pós-processamento, por forma a otimizar e alcançar um procedimento automático de shimming, potenciando, assim, as técnicas de MRI e MRS cardíacas. Métodos: Diversos ratos (n=5) foram submetidos à técnica de MR, realizada num magneto horizontal de 9.4 Tesla (T). A aquisição de imagem foi conduzida através de sequências rápidas echo variando os seguintes parâmetros: resolução, compensação de fluxo (on / off), orientação (short-axis / axial) e dimensão (multi-cortes 2D vs 3D). Três diferentes configurações de bobinas de shim foram investigadas e a sequência ótima de MR foi avaliada. Resultados: O nível de 17% de threshold demonstrou ser aceitável para a remoção das discontinuidades de fase. A análise quantitativa do desempenho das diferentes abordagens de phase unwrapping mostrou que a abordagem 3D é a mais eficaz na resolução das discontinuidades de fase presentes nos mapas de campo. A aplicação de orientação axial, os dados de maior resolução, a ausência de compensação de fluxo e a introdução de bobinas de shim de maiores ordens demonstraram um peso significativo na redução das inomogeneidades de B0, quando aplicados. Conclusões: Este projeto permitiu estabelecer parâmetros ótimos de aquisição e opções de pós-processamento que melhoram a homogeneidade de B0, importantes na validação de futuros estudos complementares.
Background: Cardiac magnetic resonance imaging and spectroscopy are tools to non-invasively characterize rodent models of human heart disease. The experiments are typically carried out on dedicated MR systems equipped with ultra-high field magnets (≥ 7 Tesla). One fundamental requirement of MR is the homogeneity of the static magnetic field B0 (Grutter, 1993), and fluctuations of the main magnetic field (B0 inhomogeneities) within the scan region should be less than three parts per million (3 ppm). Inserting a sample inherently increases the field inhomogeneity (due to different degree of magnetization across the sample in response to the B0 field (“magnetic susceptibility”)), which needs to be compensated for (Crijns et al, 2011; Koch et al, 2006). Homogenizing (i.e. shimming) the static magnetic field is crucial for any MR experiment in order to maximize resolution and signal-to-noise. This is particularly important at ultra-high magnetic fields due to linear dependence of magnetic susceptibility. Adjusting the three linear and typically up to 14 higher order shims manually is laborious and subjective. Moreover, this process is particularly challenging where various tissues (i.e. heart and skeletal muscle, bone, lungs and flowing blood) are in close vicinity within the chest, each having different magnetic susceptibilities and relative motions. Auto-shim methods such as FASTMAP or FASTERMAP (Shen et al, 1997), are clinically and experimentally well established in brain tissue, but inevitably fail in the heart due to the ill-defined phase of the MR-signal, particularly inside the ventricles. Based on a technique, previously applied to human brain – implemented a novel approach for the application to mouse hearts in vivo, that is able to homogenize the B0-field in an arbitrarily shaped, but connected region of interest. Aim: The aim of this project is to investigate optimal scan parameters and post-processing approach to optimize and advance an automated shimming procedure for improved experimental cardiac magnetic resonance imaging and spectroscopy at ultra-high magnetic fields. Methods: Mice (n = 5) underwent MR experiments carried out in a 9.4 Tesla (T) horizontal magnet. The image acquisition was performed using fast gradient echo sequences varying the following parameters: resolution, flow compensation on / off, orientation (short-axis / axial), and dimension (2D multislice vs 3D). Three different shim coils’ configurations (shim coils up to the third order) were investigated and optimal MR sequence was assessed. Results: The threshold level of 17% proved to be acceptable for removal of phase discontinuities and hence it was used in subsequent studies. Quantitative analysis of the performance of different phase unwrapping approaches showed that the 3D approach is the most effective in resolving phase discontinuities present in field maps. The application of axial orientation, highest resolution data, absence of compensation flow and the introduction of higher order shim coils showed a significant reduction of B0 inhomogeneities when applied. Conclusions: This project established optimal acquisition parameters and post-processing options to improve the homogeneity of B0, and will aid the validation process in further follow-up studies.
URI: http://hdl.handle.net/10400.14/14075
Aparece nas colecções:R - Dissertações de Mestrado / Master Dissertations
ESB - Dissertações de Mestrado / Master Dissertations

Ficheiros deste registo:
Ficheiro Descrição TamanhoFormato 
Master Thesis - Cristiano Amaral.pdf1,36 MBAdobe PDFVer/Abrir


FacebookTwitterDeliciousLinkedInDiggGoogle BookmarksMySpace
Formato BibTex MendeleyEndnote Degois 

Todos os registos no repositório estão protegidos por leis de copyright, com todos os direitos reservados.