FLOW ANALYSIS XI

SEPTEMBER 14 – 18, 2009

POLLENSA

MALLORCA. SPAIN
P100

SEQUENTIAL INJECTION LAB-ON-VALVE SYSTEM FOR THE DETERMINATION OF THE ACTIVITY OF PEROXIDASE IN VEGETABLES

Susana S. M. P. Vidigal, Ildikó V. Tóth and António O. S. S. Rangel

CBQF/Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal

Peroxidase (E.C. 1.11.1.7) is an enzyme commonly found in vegetables that can be responsible for a negative effect on the colour and on the flavour of raw or processed food. Its activity is directly implicated in the enzymatic browning of the vegetables. To extend the shelf life of vegetables they can be submitted to a blanching process. This process is a thermal procedure designed to inactivate the enzymes responsible for the generation of off-flavours and off-odours. Since peroxidase appears to be the most heat stable enzyme in plants, the assessment of its remaining activity is widely used to evaluate the effectiveness of the food thermal blanching. It is generally accepted that, if the peroxidase originally present in the sample is destroyed, then it is quite unlikely that other enzyme systems have survived.

The determination of peroxidase activity has been described based on colorimetric, chemiluminescence, electrochemical or fluorimetric detection of the product formed from the peroxidase reducing substrate. In this work, a spectrophotometric detection of the peroxidase activity in vegetables extracts is described using a flow method with sequential injection lab-on-valve format. The system is based on the reaction between hydrogen peroxide (H₂O₂) and 2,2-azino-bis(3-ethylbenzothiazoline-6) sulphonic acid (ABTS) catalysed by the enzyme (HRP). The method presented a low sample consumption of 15 µL and low consumption of ABTS and H₂O₂ of 24 µg and 12 µg respectively, per assay. It was possible to achieve a linear range up to 2 mg/L with a throughput of 1 determination per minute, which corresponds to an increase on the determination rate of 50% comparatively to the comparison method. It was also possible to monitor the on-line thermal inactivation of peroxidase at different temperatures.
Susana Vidigal thanks Fundação para a Ciência e a Tecnologia (FCT) and FSE (III Quadro Comunitário) for the grant SFRH/BD/23040/2005.